
Master’s Thesis in Telematics
for the Award of the Academic Degree

Diplom Ingenieur
at

Graz University of Technology

Aspects of Interrelations in Distributed
Component Systems

submitted by:

Stefan Thalauer

May 2004

Institute for Information Systems
and Computer Media

Supervisor: Univ.-Doz., Dipl.-Ing., Dr.techn. Klaus Schmaranz



Diplomarbeit aus Telematik
zur Verleihung des Akademischen Grades

Diplom Ingenieur
an der

Technischen Universität Graz

Aspekte wechselseitiger
Komponentenbeziehungen in verteilten

Systemen

vorgelegt von:

Stefan Thalauer

Mai 2004

Institut für Informationssysteme und Computer Medien (IICM)

Begutachter: Univ.-Doz., Dipl.-Ing., Dr.techn. Klaus Schmaranz



Acknowledgments

First of all I would like to thank Klaus Schmaranz who gave me the opportunity to
accomplish this thesis within the limits of the Dinopolis project. He always gave me the
support and advice that was needed to finish this work most accurately.

Secondly I would like to honor my teammate and fellow student Thomas Oberhuber for
the great teamwork during the work on this project. Furthermore I would like to thank
all members of the Dinopolis development team at the IICM (Institute for Information
Systems and Computer Media), Graz University of Technology who supported my work
on this master’s thesis. Special thanks go to Klaus Schmaranz, Edmund Haselwanter,
and Jürgen Malin for proofreading this thesis. Further I would like to thank Christof
Dallermassl for many useful LATEX tips which made my life a lot easier.

Very special thanks go to Margot for her love, patience and support during the last
years.

Last but not least I want to thank my parents, Brigitte and Karl. They gave me the
opportunity to study telematics and I always had their full support through all the years
of my studies.

i



Abstract

One of the main problems of the information society we are living in, is the way how
data is retrieved and managed. Thus a facility to model relationships between arbitrary
chunks of data and a way to navigate through the information space is needed. These two
challenges are solved in the Dinopolis distributed component middleware framework by
the use of a highly sophisticated interrelation mechanism. In Dinopolis interrelations are
uniquely addressable connections, relations, or dependencies between arbitrarily many
objects or components of arbitrary type or parts of them.

This thesis discusses aspects of such an interrelation mechanism. A comparison with
existing systems is given and the requirements on interrelations are worked out. It
will be shown that the most important requirements are stability and robustness of
interrelations against reconstruction of the information space. The key to stability and
consistency is a sophisticated addressing mechanism. Therefore some considerations
about addressing are presented.

Finally the technical concept and some design details of the interrelation mechanism
in Dinopolis are shown.
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Zusammenfassung

Eines der größten Probleme der Informationsgesellschaft liegt in der Art und Weise,
wie Information verwaltet wird. Die Modellierung von Beziehungen zwischen beliebi-
gen Teilen von Daten und die Navigation im Informationsraum sind deshalb immens
wichtige Aufgaben eines verteilten Komponenten Systems. Diese Aufgaben werden in
Dinopolis, einem verteilten Komponenten Middleware Framework, mittels sogenannter
Interrelations gelöst. Solche Interrelations stellen eindeutig adressierbare Verhältnisse
bzw. Abhängigkeiten zwischen Objekten oder Komponenten beliebigen Typs dar.

In dieser Arbeit werden Aspekte eines solchen Mechanismus behandelt. Bestehende
Systeme werden miteinander verglichen und die Anforderungen an ein Interrelation
Modul erarbeitet. Es stellt sich heraus, dass zu den wichtigsten Anforderungen Stabilität
und Robustheit bezüglich Rekonstruktion des Informationsraumes zählen. Der Schlüssel
zu dieser Stabilität und Konsistenz liegt in einem ausgeklügelten Adressierungsmecha-
nismus, welcher deshalb genauer behandelt wird.

Abschließend werden die technischen Konzepte und einige Design Details des Interre-
lation Moduls in Dinopolis beschrieben.
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Chapter 1

Introduction

This master’s thesis discusses the modeling and design of Interrelations between objects
and components in distributed component systems. It results from the development
process of the Interrelation Management module of the Dinopolis 1 distributed compo-
nent middleware framework. I worked on this assignment with my fellow worker Thomas
Oberhuber who also wrote his master’s thesis (see [Oberhuber, 2004]). During the devel-
opment of the use-case scenarios and at the beginning of the architectural design phase
Gernot Höbenreich temporarily joined our team.

Dinopolis is a massively distributed componentware framework. It was been devel-
oped at the IICM (Institute for Information Systems and Computer Media)2 by several
researches in small teams under the leadership of Klaus Schmaranz. In [Schmaranz,
2002a] he presents an overall description of the Dinopolis framework and characterizes
the main intentions of Dinopolis. These are platform and programming language inde-
pendency, network transparency, robust and globally unique component addressing and
the possibility of an easy integration of existing systems. Therefore the main features
of Dinopolis are a slim and extensible kernel architecture, dynamically typeable com-
ponents, full meta-information support for components and, last but not least, a highly
sophisticated multi-directional interrelation mechanism.

The key characteristics of this interrelation mechanism in the Dinopolis framework
can be outlined as follows:

• Arbitrary objects and components can be interconnected. There are no restrictions
regarding their location on the net. It is also possible to interconnect parts of
objects and components with interrelations. Moreover interrelations can also be
interconnected with other interrelations.

• In the Dinopolis System Architecture addressing is strictly separated from naviga-
tion. Therefore Interrelations are used for modeling navigation through the object
space.

• Since objects and components in the Dinopolis system are addressed by glob-
ally unique handles it is guaranteed that interrelations are robust against object

1http://www.dinopolis.org
2http://www.iicm.edu
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Chapter 1 Introduction

movement. This means that object movement does not break the interrelation
mechanism.

• Different types of interrelations are supported. For example simple hyperlinks can
be modeled as well as a complex relation of some version controlled documents.

• Interrelations are multidimensional. This means that n1 : n2 : . . . : nm dimensional
interrelations are provided.

• Interrelations are multidirectional. This means that each end of an interrelation
can be reached from any other end.

• It is possible to specify any meta-data information about these object interrela-
tions.

1.1 Chapter Overview

Chapter 1, Introduction: Gives a short overview about this work, outlines the key
features of the interrelation mechanism in the Dinopolis system and provides some
reasons why it is necessary to develop a new interrelation mechanism. In addition
some publications about related work on distributed systems are referred.

Chapter 2, Background: To be able to define the requirements of a sophisticated in-
terrelation mechanism, it is necessary to get introduced to the terminology of
this problem domain. Therefore the terms of use are defined in this chapter and
existing technologies (hyperlinks in the WWW (World Wide Web)) and stan-
dards (Xlink) are discussed. Finally two historic systems, named Hyper-G and
DINO (Distributed Interactive Network Objects) are introduced.

Chapter 3, Requirements: In this chapter the requirements which an interrelation mech-
anism has to fulfill are outlined. Additional the limitations of traditional hyperlinks
concerning this requirements are pointed out.

Chapter 4, Addressing, Naming and Navigation: In most of today’s systems address-
ing, naming, and structure are totally mixed up. But separating navigation and
addressing is the key to a consistent and robust interrelation mechanism. This
chapter gives some considerations on addressing and navigation. The terms URN
and object handles are introduced and finally an algorithm named DOLSA (Dis-
tributed Object Lookup Service Algorithm) is sketched.

Chapter 5, The Dinopolis System Architecture: This chapter gives a brief introduction
of the Dinopolis system architecture. First of all the aims Dinopolis intended to

2



Chapter 1 Introduction

solve are outlined. After this one of the key parts of the Dinopolis system is intro-
duced; the Dinopolis Object . Finally the main modules of the system architecture
are sketched in this chapter.

Chapter 6, Interrelations in Dinopolis: They are uniquely addressable, multi directed
connections, relations or dependencies between arbitrarily many Dinopolis Objects
of arbitrary types or parts of them. In this chapter the technical concept of the
interrelation mechanism of Dinopolis is described. It is shown that Interrelations
are Dinopolis Objects themselves and Endpoints are introduced. Finally the back-
ground for the need of so called Implicit Interrelations is discussed and these
Implicit Interrelations are specified.

Chapter 7, Design Details: Some selected design details of the Interrelation Manage-
ment module of Dinopolis are presented in this chapter. A use case scenario is
sketched. In this scenario a hyperlink is modeled by the use of an interrelation.
Then software requirements are identified and the classes and submodules of a
Dinopolis Object concerning interrelations are considered.

Chapter 8, Processes and Algorithms: Some selected interrelation specific processes
and algorithms are outlined in this chapter. The considerations are centered on
processes applying to Dinopolis Objects . Therefore operations called on the Inter-
relation Handler are discussed.

Chapter 9, Conclusion and Outlook: In the last chapter of this thesis the results of
this work are summarized and future developments concerning interrelations are
discussed.

As mentioned above, the interrelation management module was designed in teamwork
by Thomas Oberhuber and me (Stefan Thalauer). The module was developed together,
but we split the topics of our master’s theses which are the result of the design process.

Thomas in his thesis [Oberhuber, 2004] deals with “Aspects of Structured Component
Spaces in Distributed Systems”. He focuses on the design of Interrelation Objects ,
especially on possibilities to give semantics to interrelations. Before this discussion he
sketches a real world scenario to give a motivation why it is necessary to develop a new,
highly sophisticated interrelation mechanism.

I worked out the general requirements (Chapter 3) and an inspection about aspects of
addressing vs. navigation concerning interrelations (Chapter 4). Then I describe in detail
the interrelation model (Section 6.1), the endpoint mechanism (Section 6.3) and the con-
cept of so called Implicit Interrelations (Section 6.8) in Dinopolis. Furthermore I cover
the problem how to make this information about connections persistent (Section 6.6).

Since we worked on the same project, some topics of our theses are overlapping.
First of all we present similar technologies in the chapters that are dealing with the
introduction of the problem domain. These technologies which are sketched in both

3



Chapter 1 Introduction

theses in some way, are the WWW (World Wide Web), Xlink (XML Linking Language)
and Hyper-G. Of course a brief introduction of the Dinopolis middleware framework is
given and its history is presented in both theses. The design details are adapted from
the design document of the interrelation management module [Oberhuber and Thalauer,
2004] and therefore they for sure look similar.

At the end of both theses some important processes and algorithms are presented
(see [Oberhuber, 2004] and Chapter 8). They are again adapted from [Oberhuber and
Thalauer, 2004] but in these chapters we focus on different topics. Thomas focuses
on processes that are called on Interrelation Objects whereas my considerations are
concentrating on processes applying Dinopolis Objects .

1.2 Motivation

One of the main problems of the information society we are living in is the way how data
is retrieved and managed. Modern document-, information- and knowledge-management
systems promise to handle the rising information flood. Therefore a facility to navigate
through the information space is needed. Furthermore it should be possible to model
relations between arbitrary chunks of data. In today’s systems these two tasks are often
performed by the use of links. Thus link management is an essential part of modern
hypermedia systems. This fact is stated in [Lennon, 1997]:

Although in many respects link management is the crux of hypermedia sys-
tems design, it is, unfortunately, the weakest aspect of many modern systems.
Indiscriminate use of links, particularly in large distributed systems has led
to tangles and mismanaged webs, which is frustrating for system managers
and users alike.

From this it follows that the design of a sophisticated interrelation mechanism is not an
easy but a very important task. Besides the above mentioned frustrating aspects some
other fundamental problems of today’s hypermedia systems come into play. Hyperlinks
are often neither robust against object movement nor stay consistent when an intercon-
nected object is deleted. Schmaranz points out in [Schmaranz, 2002a] one of the main
reasons for this problem:

In case of the Web there exist hyperlinks that represent pointers which are
not robust and inline images that share the same problem. These two types
of interrelations are not even part of the Web technology. In fact they are
part of the HTML definition [...] the XLink recommendation is for sure
a step into the right direction. Nevertheless, even in this recommendation
interrelations are still treated as parts of documents rather than integral
parts of the distribution platform.

4
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Another reason for non robust, inconsistent links is the fact that in most systems ad-
dressing and navigation are totally mixed up. A sophisticated addressing mechanism
and links which are not embedded in the content of interrelated documents are the key
characteristics to solve these already mentioned problems. But additional problems can
be identified. Hyperlinks are often one-dimensional and the facility to give them different
semantics is often only rudimentarily implemented.

Starting from these considerations the requirements on a sophisticated interrelation
mechanism are developed. These needs are covered in detail in Chapter 3. In contrast to
this theoretical treating Thomas Oberhuber sketches in his master’s thesis [Oberhuber,
2004] an imaginary but realistic real world scenario. Based on the resulting requirements
of this scenario he derives the key features of the Dinopolis system. He focuses on aspects
of structured component spaces in distributed systems.

After developing the requirements for an interrelation mechanism some observations
about addressing and naming of objects are presented. These observations and some
considerations about navigation aspects are discussed in Chapter 4. Then the corner-
stones of the Dinopolis middleware system are outlined in Chapter 5. In Chapter 6 the
interrelation mechanism of Dinopolis is introduced. Chapter 7 presents some selected
design details and some interrelation specific processes applying to Dinopolis Objects are
presented in Chapter 8. Finally the conclusions of this work are discussed in Chapter 9.

1.3 Related Work

The development process of Dinopolis just entered the implementation phase. Klaus
Schmaranz identified in [Schmaranz, 2002c] the requirements that a modern distributed
system has to satisfy. These requirements and the algorithm described in [Schmaranz,
2002a] for robust object lookup services lead to the current design of Dinopolis. Some
other publications from members of the Dinopolis development team cover topics con-
cerning Dinopolis. [Blümlinger et al., 2003c] deals with the object life-cycle management
in Dinopolis, [Blümlinger et al., 2003a] describes how controlling access from applica-
tions to core modules of Dinopolis works and [Blümlinger et al., 2003b] describes how
it is possible to change the subtypes of objects at runtime. And, last but not least,
Edmund Haselwanter describes how component composition in Dinopolis works in his
master’s thesis [Haselwanter, 2003].

5



Chapter 2

Background

Before the requirements (see Chapter 3) for a highly sophisticated relation mechanism
can be worked out, the used terms have to be clarified. Therefore some definitions are
given in this chapter. To get an understanding about some problems that may arise
during the development process of an interrelation mechanism the existing technologies
and standards are outlined. The Dexter Hypermedia Reference Model is introduced. A
short description of hyperlinks in the WWW (World Wide Web) is given. After this
Xlink (XML Linking Language) is discussed and the last two sections of this chapter
introduce two systems which have been developed at the IICM, named Hyper-G and
DINO.

2.1 Definitions

Hypertext The term Hypertext is introduced by Ted Nelson in the paper “A file struc-
ture for the complex, the changing and the indeterminate” [Nelson, 1965] in 1965.
According to Nelson hypertext means:

. . . a body of written or pictorial material interconnected in such a com-
plex way that it could not conveniently be presented or represented on
paper.

In other words hypertext is non-sequential writing. Different chunks of data are
connected in a certain way. This offers different navigation paths through the
provided information. The connection of the data chunks is done by the use of
hyperlinks.

But the idea of hypertext-systems is much older. It goes back to the article “As we
make think” [Bush, 1945] published 1945. In this article Vannevar Bush describes
a device called Memex (Memory Expander). Memex is a mechanical device
which is an extension of the human brain.

Hypermedia is the extension of the term Hypertext. Audio and video are supported
in addition to pure hypertext.

6



Chapter 2 Background

A good overview about the history of hypermedia and about some systems is
given by Lennon in [Lennon, 1997] and Nielsen in [Nielsen, 1995]. The WWW is
considered as showcase for link management in hypertext systems in Section 2.3
and Hyper-G in Section 2.5.

Nodes and Links are the essential elements of each hypermedia system. A node rep-
resents an atomic information entity. To understand the content of a node, no
knowledge about the content of another node is required. This is essential for
non-sequential reading. A node may be written text, an image or a video clip etc.

Two related nodes are connected by a link. Links can be directed or directionless.
But links often are only pointers from a source anchor to a destination node. It
is possible to “resolve” a link. This means that, in case of a directed link, the
destination node is fetched for the user.

Transclusion (or Inclusion) is also introduced by Ted Nelson [Nelson, 1992]. Transclu-
sions are one of the key features of Nelson’s Project Xanadu. They allow to include
objects by reference. This means that the included data is not copied and also does
not have to be stored in two places. Therefore transclusions have some advantages
compared with common links. Since data is stored only once, storage space is
saved. The access to some quoted data is always redirected to the original location
and therefore changes are updated automatically. The context of the embedded
object is still available and has to be displayed. It is guaranteed that the original
author is always quoted and eventually paid correctly.

Transclusions are implemented only rudimentarily in today’s systems. One reason
for the lack of implementations is the existence of many different heterogeneous
systems [Krottmaier and Maurer, 2001]. This problem can be solved by a dis-
tributed component system with a sophisticated interrelation mechanism such as
Dinopolis.

2.2 The Dexter Hypertext Reference Model

The Dexter Hypertext Reference Model [Halasz and Schwartz, 1994] (short: Dexter
Model) has the goal to provide a basis for comparing hypertext systems. The Dexter
Model is the result of two workshops. It is named after the location where the first
workshop was held in 1988, the Dexter Inn in New Hampshire.

The Dexter Model divides a hypertext system into three layers. The run-time layer
deals with the presentation of the hypertext and with user interaction. The storage layer
describes the “data base” of a system. This data base contains a network of nodes and
links. The third layer is the within-component layer which defines the content structure
of the nodes.

7



Chapter 2 Background

The main focus of the model is on the storage layer. The “data base” consists of
components. A component is an atom (text, image, etc. ) or a link or a composition of
components. An atomic component is comparable with the term node which is used in
common hypertext systems. The term node was avoided by the authors of the Dexter
Model because it was not clearly defined before. Components are addressable entities
and therefore every component has to be identified by a UID (Unique Identifier). This
UID has to be unique within the entire hypertext system. The storage layer defines
two functions for retrieving components. The accessor function returns a component
with a given UID. But sometimes the use of UIDs as addressing mechanism is not
enough. Therefore a kind of indirect addressing is supported by the storage layer. The
resolver function returns a UID for a certain specification. But this is sometimes not
possible. Consider the case that a component specified by such a specification does not
exist because of an editing process or a move operation.

A link in the Dexter Model represents a relationship between components. In general
a link connects two or more components. An anchor has two parts. The anchor id
is an identifier defined only locally concerning a component and stays constant even
if a component is edited. The anchor value specifies some location or region within
a component and is interpreted by applications. It is also changed if a component is
edited by an application. The UID and anchor id pair guarantees a stable reference
mechanism within the content. In addition it is possible in the Dexter model to define
a presentation and direction specifier. The presentation specifier is used within the
runtime layer to provide a way to make an anchor visible. The direction specifier is used
to define whether the endpoint is the source or destination of a link. It is also possible
to define bidirectional links or endpoints that are neither source nor destination of a
link. Since in the Dexter model links are components and therefore they have a UID it
is also possible to have a link which interconnects two other links.

In addition to the already mentioned “data base”, the storage layer also defines some
operations. It is possible to create, delete and modify components. Furthermore it is
possible to retrieve a component or to resolve a link.

In the Dexter model multidimensional links are possible. Furthermore links to links
are also possible. These two facts and the facility to create arbitrary (non cyclic) com-
positions of components are the strengths of the model. One of the biggest limitations
of the Dexter Model is the fact that it requires links and other system information
to be completely available at all time [Dyke and Sollins, 1995]. This is an unrealistic
requirement especially for distributed systems.

2.3 The World Wide Web

The WWW [Berners-Lee et al., 1994] is the most commonly used distributed hypertext
system of today. It was developed at the CERN in the late 1980s. Its success results from
the use of a relatively simple document format (HTML) and a simple network protocol
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(HTTP). Hence this provides a simple way to exchange information in a human readable
format. Furthermore exchange of information is platform independent.

In addition to the definition of the used format and network protocol the WWW also
defines an addressing system (URI). Some considerations about this addressing format
and addressing in general can be found in Chapter 4.

In the WWW relations between documents are modeled by links. These hyperlinks
are also used for navigation issues between documents and across the document space.
A big drawback of the design of the WWW is the fact that hyperlinks are defined in the
document format [Berners-Lee and Connolly, 1995]. According to this recommendation
a hyperlink interconnects two anchors which are identified by an identifier. Such links
in HTML (HyperText Markup Language) are only unidirectional. The results of these
circumstances are discussed in detail in Section 3.3 and Section 3.5.

2.4 XLink

Xlink (XML Linking Language) is defined in [DeRose et al., 2001]. A detailed descrip-
tion about Xlink and XML related topics can be found on the web-page of the World
Wide Web Consortium1.

As the name implies, it is responsible to manage links between XML documents. It
is possible to describe links similar to hyperlinks known from the WWW. But is also
possible to model more sophisticated links with Xlink. Therefore it is possible to create
links with more than two endpoints. Links are always bidirectional and they are directed.
It is further possible to assign certain meta-data to a link. But the biggest advantage
compared with traditional hyperlinks in the WWW is the fact that Xlink allows to
store links on locations separate from the linked documents.

Interconnected documents are identified by URIs. Note that Chapter 4 gives a de-
tailed discussion about aspects of addressing, including an introduction of the URI
schema.

As mentioned in Section 1.2 Xlink is an enhancement of hyperlinks known from the
WWW, but it also has the main drawback that link information is treated as part of
documents.

2.5 Hyper-G

Hyper-G (now Hyperwave2) is a distributed hypermedia system. It was developed at the
IICM, Graz University of Technology, because all so called “first generation hypermedia
systems” (e.g. the WWW) did not fulfill the major requirements for a hypermedia
system. [Andrews et al., 1994]. Hyper-G was introduced as a so called “second generation

1http://www.w3.org/
2http://www.hyperwave.com
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hypermedia system”. A detailed description of the system architecture can be found
in [Maurer, 1996]. The key features of Hyper-G are outlined in this section. Of course
the focus lies on aspects of interrelations between objects.

In Hyper-G links are defined by source and destination anchors. The source anchor
is the starting point of a hyperlink. The destination anchor defines the endpoint of a
hyperlink. One of the key characteristics of Hyper-G is the fact that links are stored
separately from documents. The link information is stored in external databases. The
resulting advantages in comparison with stored inks within documents can be summa-
rized as follows: Bidirectional Links are supported by Hyper-G. Therefore it is possible
to navigate backwards from destination to source and it is also possible to generate link
maps that show all links of a certain document. Link consistency is guaranteed because
of bidirectional links. For example, if a document is deleted, links pointing to it will
be removed. Links in Hyper-G support attributes. It is possible to query for links that
have certain attributes. Hyper-G supports links with different access rules. And last
but not least documents do not have to be modified if a link is created or altered.

Another key feature of Hyper-G is the used data model. The node-link model is
extended by special link types and a new object class, the collection is introduced. A
collection may be compared with directories in a file system. It is a composite object
and contains other objects. These objects are documents or other collections. With
this definition it is possible to form a directed acyclic graph of collections, the collection
hierarchy. This collection hierarchy can be used for navigation.

It can be seen that Hyper-G satisfies most of the requirements proposed in Chapter 3.
It guarantees consistency of the links and the collection hierarchy in the local case, when
both endpoints of a link reside on the same server. But it does not guarantee consistency
for links between documents which are stored on different servers. In this case only
“weak” consistency is guaranteed. That means the hyperweb may be inconsistent for a
certain period of time if a document is deleted [Kappe, 1995].

2.6 DINO

DINO (Distributed Interactive Network Objects) is a Java library which was developed
by a team of researchers at the IICM, Graz University of Technology. The development
process started in 1997. The inital aim of DINO was to develop a messaging system
[Freismuth et al., 1997]. In 1999 DINO was presented at the CEBIT in Hannover as
the core of the MTP (Medical Telematics Platform) prototype. The MTP project has
been developed in cooperation with the DLR (German Aerospace Center).

But DINO did not scale well for large systems and enhancement of the system was
nearly impossible because of the system architecture. This made it necessary to perform
a complete redesign of the system. With the lessons learned during the development
phase of the first version of DINO and with new intentions in mind the development
of Dinopolis began. The new system was not only a simple messaging system. It was
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intended to design a massively distributed component middleware framework. Thus
Dinopolis has its origin in the DINO library. An introduction of the characteristics of
the Dinopolis system architecture, especially focused on aspects needed for interrelations,
is given in Chapter 5.
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Chapter 3

Requirements

A highly sophisticated interrelation mechanism between objects has additional needs in
comparison with a traditional hyperlink mechanism. Furthermore it should be clear that
traditional hyperlinks have some fundamental limitations which made them unemploy-
able for a modern distributed component system.

In this chapter these limitations are considered and the requirements that an interrela-
tion mechanism in a modern distributed component system has to satisfy, are developed.
Additionally a comparison with the link mechanisms in traditional hypermedia systems
is given.

3.1 Types and Semantics

interrelations between objects may have different semantics. For example a parent-child
relation between two objects has a different meaning than an annotation of an object.
Randal Trigg proposes in his Ph.D thesis [Trigg, 1983] a list of different link types.
In Trigg’s taxonomy of link types he first distinguishes between two main categories.
Normal links which are connecting parts of scientific documents and Commentary links
that are attaching statements to a document. Examples for Trigg’s Normal links are
Citation source, Example or Explanation. Comment or Critics represent Commentary
links in Trigg’s taxonomy of links. Other interrelation types in hypertext systems such as
glossary, footnote, appendix etc. are thinkable. With typed interrelations it is easier to
organize information and navigate through the object space. The following requirement
can be derived:

⇒ It must be possible to assign different types to interrelations.

Semantically, typed links are partly used in the WWW [Berners-Lee et al., 1994].The
historic recommendation of HTML 2.0 [Berners-Lee and Connolly, 1995] already in-
cluded the <A> element which denotes an anchor or destination of a link and the <LINK>
element for defining rudimentary typed document relations:

The <LINK> element is typically used to indicate authorship, related indexes
and glossaries, older or more recent versions, document hierarchy, associated
resources such as style sheets, etc.
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For both elements the W3C recommends the attributes rel (relationship to link) and
rev (relationship from link) to define semantics. Supported link types are prev and next

for sequences, start and up for hierarchy, contents and index for navigation. Common
link types as glossary, copyright, appendix, help and author are also supported, as
well as the possibility to refer to a related object with the link type bookmark. It
is a remarkable note, that graphical web browsers did not completely support these
attributes of the LINK element until the end of 2001 1 [Tekelenburg, 2004].

3.2 Meta-data

In addition to the already mentioned different types of interrelations it may be useful to
attach some other information to an interrelation or to assign certain attributes to it.
Such information can be the name of the author, a timestamp, labels or some describing
keywords. For example in HTML the title attribute exists which may provide a title
for a hyperlink. This attribute is commonly displayed as “tooltip” in graphical web
browsers. This meta-information and attributes are represented by meta-data, leading
to the following requirement:

⇒ Interrelations have to support meta-data

In addition meta-data should not only be attachable to an interrelation, but it should also
be possible to attach meta-data to single endpoints. Some of this meta-data is attached
explicitly (e.g. author), but other meta-data may be generated and attached implicitly.
For example such implicit meta-data may be the content-type of an interconnected
object.

In addition to the ability to have types of relations, meta-data attached to relations
give a supplementary possibility to distinguish different interrelations. Furthermore it
also is possible to implement a search facility based on interrelations’ meta-data. For
example someone would like to find the following:

• All interrelations which are newer than two weeks.

• All interrelations which are created by the same author.

An outline about “link attributes and structure-based query” and some application areas
for structure-based query is presented in [Bieber et al., 1997].

1Mozilla supports <LINK> since version 0.9.5, Opera since version 7 and the Internet Explorer still
needs a third-party tool to support it
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3.3 Stability and Consistency

One of the most annoying problems in hypertext systems are links, which cannot be
fetched. Perhaps you know this situation when you get a “404 Error” response from a
web server if the destination document of a hyperlink is not available. The reason for
such dangling links can be:

• The destination object has been deleted.

• The destination object has been moved to another place on the net.

• The destination object has been renamed.

Furthermore it may occur that an object is eventually replaced by an other one. In this
case users usually have no chance to recognize this fact, because they will not get an
error response from the web server.

As a result of these considerations the following two requirements are essential for a
highly sophisticated interrelation mechanism:

⇒ Interrelations have to be robust against object movement

⇒ The interrelation mechanism has to be consistent, even if an endpoint
is deleted.

Let us now analyze which design issues of today’s systems are responsible for the above
mentioned problems.

One problem is that links are often treated as content of an object. For example hy-
perlinks are integrated in the HTML recommendation (see Section 3.1). If a referenced
document which lies on an external server is moved to another place, the content of
the document including this link has to be modified. Since often the required access
rights are not present it is not possible to alter this document. The solution for this
problem would be not to store the links internally in the documents but somewhere
externally. For example the recommendation of Xlink allows links which are not part
of the content of the referring document. Another approach is the use of external link
databases to organize relations between objects. Using link databases, some additional
work is required to guarantee link consistency [Kappe, 1995]. The Hyperwave Informa-
tion Server [Maurer, 1996] and an early version of DINO [Blümlinger, 2000] for instance
use such external link databases. It is mentioned that externally stored links have to be
included in the documents before they are delivered to the user.

Another reason for this “dangling links syndrome” is the fact that links are often only
pointers to the destination object. If such one-directional links are used, it is difficult to
notice whether a destination object is moved to another place or whether it is deleted.
In server-client architectures it may be possible to inform users that the destination
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of a link has changed. For example the standard document [Berners-Lee et al., 1999]
defining HTTP (HyperText Transfer Protocol) includes some “Status Code Definitions”
which are used to inform the user agent about the status of his request. If a document
has moved to another place the server may answer an HTTP GET request with 301
(Moved Permanently). The status code 404 (Not Found) and the status code 410 (Gone)
indicate that a requested resource is “intentionally unavailable.” This approach has the
drawback that it only notifies the requesting user about the changed destination of a
link. However, the author of the document including this broken link is not informed in
this case. Therefore a better solution for this problem is needed. This solution is shown
in detail in Section 3.5.

3.4 Logical Structure strictly separated from Addressing
Structure

There often isn’t a separation between addressing and navigation. Let us have a closer
look at this aspect. We will see that this may be a major problem for interrelations
concerning the requirements on stability and consistency. Furthermore an important
requirement for a modern distributed system will be derived.

Objects can reside on different systems distributed across the net. Besides the fact
that it should not make a difference for users if they refer to a local or remote object,
the protocol schema would not be part of an object’s address too. Consider the case
that a document first may reside on an FTP-server and then this server is replaced by
an HTTP-server. If the protocol is part of the address the object will not be reachable
anymore, even if the object’s path has not changed. The same problem occurs if the
hierarchical structure of a location is encoded in the address of an object. An object
stored in a filesystem is not reachable under its original address if for example it is moved
to its parent directory. This leads us to the very important requirement on interrelations:

⇒ Addressing has to be strictly separated from Navigation

Since most hypermedia systems do not distinguish between the address of an object
and its name, they are not able to provide consistent and stable links. Remember the
URL-based address mechanism of the WWW. Consistency and robustness of object-
addressing are not only an important requirement on interrelations, these aspects are
also essential for a massively distributed system’s architecture. Therefore a detailed
discussion about aspects of addressing and navigation is given in Chapter 4.

3.5 Multidirectional Interrelations

As seen above, one potential reason for inconsistent interrelations are one-directional
interrelations. Thus, by using multidirectional interrelations it is possible to notify all
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objects referring to a certain object which have been moved or deleted. Furthermore
it is possible to remove interrelations if they are irrelevant because the referred object
has been deleted. These steps can be performed automatically. Therefore the following
requirement can be proposed:

⇒ Interrelations have to be multidirectional

From this requirement follows that it is possible for the system to display all links
referring an object. In other words starting from an object it is possible to reach all other
objects which are interconnected by an interrelation. This may be essential if navigation
is done with interrelations. In this case it is easy to provide required navigation paths
(e.g forward, backward, up . . . ) without performing a search operation over all objects.

Now let us have a look how this is solved in today’s systems. Since in most of today
systems links are two-dimensional (i.e. 1 : 1) only the situation concerning bidirectional
links is considered. The Hyperwave Information Server provides bidirectional links,
as well es an early version of DINO does. The currently very popular collaborative
software Wiki provides a “back link” mechanism to detect all internal links which point
to the current document. But this “back link” mechanism is implemented by searching
the underlying database. More precisely, in most Wikis different pages are identified by
their titles in CamelCase. Therefore links are differentiated easily from standard spelling
and finding all back links is implemented by a simple search for the titles of the current
page in all other pages.

3.6 Multidimensional Interrelations

With hyperlinks it is only possible to model 1 : 1 interrelations. This can be seen by
the fact that a hyperlink has two ends, the anchor node and the destination node. It
should be clear that such 1 : 1 interrelations cover only a small spectrum of thinkable
multidimensional relation scenarios. For instance two-dimensional interrelations may
be:

1:1 An interrelation with one source and one destination. As already mentioned this
case is similar to the link definition known from HTML.

1:n An interrelation with one source and several destinations (e.g. children within a
hierarchy, one parent has several children).

n:1 An interrelation with several sources and one destination (e.g. a citation of a fun-
damental paper).

0:n An interrelation with no source and several destinations (e.g. a bookmark)

n:m This is the general case, an interrelation with several sources and destinations (e.g.
interconnecting two version controlled objects).
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All these cases can be modeled with an n : m interrelation. Certainly it is possible
to emulate n : m interrelations by using many 1 : 1 interrelations, but this may cause
some avoidable overhead. However, sometimes it is even not possible to model all think-
able and meaningful relationships between objects with such an n : m interrelation
mechanism. To solve this problem and to be able to model universally valid relation-
ships between arbitrary objects, a distributed component system should provide an
n1 : n2 : . . . : nm interrelation mechanism. Therefore a highly sophisticated interrelation
mechanism has to satisfy the following:

⇒ Multidimensional interrelations have to be provided

3.7 Interrelations between Interrelations

As seen in the previous section, it should be possible to have interrelations between
arbitrary objects. There’s more to it than that. Sometimes an interrelation may be of
interest. Just think of an annotation of a link in a collaborative system. Therefore it will
be very useful to have interrelations which are attached to other interrelations. From
this follows the next requirement:

⇒ Interrelations between interrelations have to be supported

As a result of this requirement it is possible to model a link to a destination that it-
self represents a hyperlink between other objects. As seen in Section 2.2 [Halasz and
Schwartz, 1994] in the Dexter Model such interrelations between interrelations are sup-
ported. Additionally another important aspect comes into play. Interrelations always
interconnect some addressable entities. Because of this fact and to be conformant to
the requirement that interrelations between interrelations have to be provided, the next
fact can be proposed:

⇒ Interrelations also have to be addressable

An outcome of this fact is that interrelations have to be addressable objects, respectively
components. This circumstance makes sense because a common treatment of addressable
objects is guaranteed.

3.8 Adding Interrelations to Systems which do not
support them

One major requirement on a modern distributed middleware framework is that it is pos-
sible to embed and combine arbitrary existing systems, such as file-systems, databases,

17



Chapter 3 Requirements

and web-servers. [Schmaranz, 2002c]. Thus interrelations are not supported by all em-
bedded systems. Consider a database that does not allow setting links between the
records in it. Another example are links between audio and video-streams. This has the
following consequency:

⇒ Systems that do not support a certain kind of interrelation or no in-
terrelations at all may be enhanced with this functionality

It should be clear that this can be achieved storing such interrelations somewhere exter-
nal. Additional the middleware system has to provide a possibility to store this external
managed interrelations.

3.9 System Immanent and Explicit Interrelations

As mentioned above it has to be possible to embed existing systems in a middleware
framework. In addition to the last requirement, further aspects come into play.

Consider a filesystem which organizes files in directories.

• It is responsible for the hierarchical organization of files and provides a way for
navigation. But addressing and navigation are often totally mixed up

• Some kind of symbolic links are supported by most filesystems.

These system internal dependencies of files and directories should also be modeled by
interrelations. Since these relationships are already present in the existing system and
not generated explicit within the middleware framework these interrelations are called
Implicit Interrelations and it follows:

⇒ Implicit Interrelations have to be supported.

On the other hand there are interrelations which can be set explicitly from users or
applications. These interrelations are called Explicit Interrelations. When speaking
about interrelations, explicit interrelations are meant. It should be clear that there has
to be a way to distinguish between explicit and implicit interrelations. Furthermore all
requirements proposed so far are valid for implicit interrelations with a few exceptions:

• Implicit interrelations are generated by embedded systems. Therefore they are not
objects respectively components in the sense of componentware. From this it fol-
lows that it is not possible to have explicit interrelations to implicit interrelations.

• Meta-data for implicit interrelations is only provided at the time when they are
supported by the embedded system.
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• Consistency of implicit interrelations may not be guaranteed if it is outside the
control of the middleware framework. Consider again symbolic links in a filesystem.
These are unidirectional pointers to some place in the filesystem. This means that
a move operation on the destination will cause a symbolic link that points to
nowhere.

These restrictions are avoided if each implicit interrelation is converted into an explicit
one when the external system is embedded. At a first glance this seems to be a satisfy-
ing solution for the problem, but in reality it is not. Explicit interrelations have to be
addressable and therefore this approach would not scale well, because for every system
immanent interrelation a globally unique handle is generated. For example browsing a
filesystem and the resulting automatic generation of explicit interrelations may cause
waste of globally unique handles and furthermore this would cause performance prob-
lems. Nevertheless it has to be possible to convert an implicit interrelation to an explicit
one.

3.10 Operations on Interrelations

To be able to work with Interrelations some operations have to be provided by the
Distributed Component System:

Create Interrelation: There must be an operation which allows to create a new inter-
relation between two arbitrary objects.

Delete Interrelation: There must be an operation which allows to delete an existing
interrelation. This interrelation can be an explicit interrelation and it can connect
arbitrary objects. It has to be assured that all objects attached to the Interrelation
are notified about the pending deletion request. If deletion of an interrelation would
lead to an inconsistent state, it has to be prohibited or delayed.

Attach an Endpoint to an Interrelation: There must be an operation which allows to
attach an object to an interrelation.

Detach an Endpoint from an Interrelation: There must be be an operation which al-
lows to detach an object from an interrelation. It has to be assured that this
object attached to the interrelation is notified about the pending detach request.
If this detach process would lead to an inconsistent state, it has to be prohibited
or delayed.

Resolve an Interrelation: There must be an operation which allows to resolve an in-
terrelation. But a resolve operation is not always trivial and an interrelation can
provide various resolve operations depending on its type.
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Consider as an example a 1 : 1 interrelation of type hyperlink. Starting from an
object that represents the source of that hyperlink, a resolve operation has to return
the endpoint representing the destination object. A more complex example would
be an n : m dimensional multilingual interrelation. In this case for a given source
object in a specific language the resolve operation should return the corresponding
destination object which has the same language. This means that a resolve request
from a german document should also return a german document.

A further valid resolve operation would return all endpoints that are attached to
this Interrelation Object .

The operations presented here are the most basic operations. Other operations dealing
with meta-data or providing some functionality to generate back links are also thinkable.
Furthermore operations for storing and loading interrelations have to be provided.
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Addressing, Naming and Navigation

Interrelations have to be robust against object movement and consistent in respect to
object deletion. These two requirements are proposed in the previous chapter (see Sec-
tion 3.3). They also are fundamental for a distributed component framework. The key
to stability and consistency is a sophisticated addressing mechanism. This addressing
mechanism is responsible for handling and resolving addresses of objects. This chapter
deals with considerations about addressing, naming, navigation, and structure of ob-
jects in distributed component systems. The terms of use are defined and requirements
of an addressing mechanism are sketched. Transparency aspects concerning network,
persistence, protocol, schema, and location are discussed. Some problems of existing
systems are pointed out on the base of the addressing system of the WWW. Then the
PURL (Persistent URL) system, the “handle system”, and the DOI (Digital Object
Identifier) System which is an implementation of the ‘handle system” are introduced
and compared.

Finally the addressing mechanism of the Dinopolis distributed component framework
is presented. It is named DOLSA (Distributed Object Lookup Service Algorithm) and
guarantees robustness and stability as well as scalability concerning object movement.

4.1 Definitions

In most of today’s systems addressing, naming, and structure are totally mixed up. This
is very misleading and therefore the terms of use are defined:

Name is a label to an object. It is used to distinguish between different objects. Fur-
thermore it has to be independent of the physical location of an object.

Address specifies the physical location of an object. An address has to be unique to be
able to resolve it. The address changes if an object has moved from one physical
location to another physical location.

Structure of the object-space is defined by the relationships between the objects. These
interrelations between objects are used for navigation through the object-space.
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Resource is defined as “anything that has identity” [Berners-Lee et al., 1998]. Examples
are documents, images or a collection of other resources. Resources in the WWW
are retrieved by identifiers such as URIs.

Identifier is used to refer to a resource(also [Berners-Lee et al., 1998]). An identifier is
often a string of characters.

Handle is a unique name for digital objects and other Internet resources. It is defined
as an identifier for an object that is independent of its physical location. It must
be possible to resolve a handle unambiguously. Therefore a bijective mapping
between handles and objects has to exist. This resolve process can be made via a
lookup-service.

4.2 Addressing vs. Navigation

A distributed component system has to provide ways to navigate through the object
space. Parunak proposes in [Van Dyke Parunak, 1989] several navigational strategies.
According to Parunak these are:

Identifier Strategy assigns a unique identifier to each entity of interest. By itself, this
strategy degenerates to exhaustive search.

Path Strategy provides a procedural description of the way to the target. This strategy
uses the identifier strategy to describe the entities and is only useful if the number
of arising nodes is typically much less than the total number of nodes.

Address Strategy the address of the target is provided. It is only needed to resolve this
address to get to the desired target.

In addition he identifies two more strategies, the Direction and Distance Strategy , but
these are not relevant for information systems. It should be clear that the address
strategy needs robust addresses of object locations to work well. But in today’s systems
addresses are often not robust. Two reasons can be identified for this circumstance:

• Structure of object-space is part of the address

Most of today’s systems are organized hierarchically. Furthermore this hierarchical
structure is represented in the address space. Consider a filesystem where files and
directories form a hierarchical structure. The location of a file is identified by the
path to it (e.g. /tmp/foo/bar.txt on a unix-file system). It should be clear that a
change of the structure of the filesystem or a change of the name of one directory
would change the address of this object.
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• Addressing and naming of objects is totally mixed up. The name of an object is
often part of the address. Consider again a filesystem. If the name of a document
is changed, then also its filename will be changed. But this results again in a
change of the address of this object.

A solution for this problem is a strict separation of addressing, naming and structure.
In addition this separation is also a requirement to obtain protocol and schema trans-
parency [Schmaranz, 2002c]. Protocol and schema transparency are besides network,
persistency, and location transparency the keys to distribution. Schmaranz defines trans-
parency as a kind of hiding complexity by encapsulating it on different abstraction levels.

Two important design issues can be derived from the requirement for separation. Han-
dles are used to identify objects. These handles are independent of the physical location
of the object. Therefore a bijective mapping must exist between the handle and the
object to provide a way to resolve a handle unambiguously. As can be seen afterwards
it makes sense to use a lookup-service for the resolve operation of this mapping. Fur-
thermore handles should not contain any name information which can be interpreted by
humans [Blümlinger and Dallermassl, 2002]. This name information should be added
to an object as meta-data. The second important design issue relates to the way nav-
igation is provided. Navigation through the object-space has to be done by the use of
interrelations. The main focus of this thesis lies on the development of such an interrela-
tion mechanism. Therefore a description of the detailed design of a highly sophisticated
interrelation mechanism can be found in Chapter 6. The use of handles guarantees a
robust addressing mechanism. This applies only for the case when the hierarchical struc-
ture is changed or the meta-data representing an object’s name is altered. But handles
do not guarantee stability against object movement. Consider the case when an object
is moved from one server to another. Since the handle is independent of the object
location, the addressing mechanism would break. It should be clear that the mapping
between the handle of an object and the new location of this object has to be updated in
some way to provide a stable addressing mechanism. There are two main approaches to
solve this problem. The first approach is a forwarding algorithm. Whenever an object is
moved to another physical location a “forward” object is placed at the orignal location
which refers to the new location. This approach was implemented in a previous version
of Dinopolis to provide stable relations. It is described in detail in [Blümlinger, 2000].
But this approach has two main drawbacks. It does not scale well for frequent object
movements. It is possible that long “forwarding chains” occur due to frequent object
movements. As a result the response time is weak. Furthermore if a server goes offline
it would break this “forwarding chain” and a moved object will not be reachable until
the server goes online. This may cause inconsistency.

The second approach is a lookup-service algorithm where entries in the lookup-service
are updated automatically whenever an object has been moved to another location. A
naive implementation will have problems with scalability and will also provide only poor
response times. Therefore an algorithm (DOLSA, see Section 4.7) was developed for
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Dinopolis. It combines the advantages of both approaches while avoiding their draw-
backs.

4.3 Uniform Resource Identifiers

Besides the network and document protocol the WWW defines an addressing system
[Berners-Lee et al., 1994]. This addressing system defines a URI (Uniform Resource
Identifier). It is a compact string of characters that is used for identifying a resource. As
the name suggests identifiers in this addressing system are “uniform”. This means that
it is possible to refer to objects which are accessed by different network protocols such
as FTP (File Transfer Protocol) or HTTP in a uniform way. This addressing system
was designed to be able to handle existing network protocols. Another important design
aspect was easy extensibility of new network protocol types. The addressing system of
the WWW is defined in [Berners-Lee et al., 1998]:

URI (Uniform Resource Identifier) is used for identifying resources. It can be a loca-
tion, a name, or both a location and a name. The syntax of a URI depends on
the used schema. It contains the name of the scheme followed by a colon and then
the scheme specific part. The scheme specific part is a string whose interpretation
depends on the scheme. Examples for common used URIs are the mailto-scheme
for electronic mail addresses or HTTP scheme for HyperText Transfer Protocol
services. Some URI schemes support a hierarchical naming system. The hier-
archy of the name is denoted by a forward slash (“/”) delimiter separating the
components in the scheme.

URL (Uniform Resource Locator) identifies a resource via their address instead of the
name of this resource. URLs form a subset of an URI naming schema. A URL
consist of the following parts: The network protocol (e.g. HTTP or mailto) to
access this resource. The host address or domain name where this resource is stored
and the path or file name of this resource on the host machine. For example http:
//www.dinopolis.org/index.html is a valid URL (Uniform Resource Locator).

URN (Uniform Resource Name) provides a globally unique and persistent identifier
for a resource. URNs form, as well as URLs, a subset of an URI naming schema.
A URN (Uniform Resource Name) consists of the string “urn” and a namespace
identifier followed by a namespace specific string (e.g. urn:foo:a123,456). The
syntax of URNs is defined in [Moats, 1997].

The most frequent used URIs in the WWW are URLs. But URLs have several draw-
backs. First of all it is possible that two ore more URLs refer to the same resource or
object. Consider a document stored on different servers or this document can be re-
trieved by different access protocols such as HTTP or FTP. Therefore it is not possible
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to compare two objects by the use of their URLs. A second problem occurs if the do-
main name of the host changes or the document is moved to another host with a different
domain name. In this cases the URL of the resource changes and therefore URLs are
not stable against object movement. Furthermore a change of the access protocol also
changes the address. Consider a text-file which is first accessed via a FTP and then the
protocol is changed to HTTP. The third major problem of the URL addressing mecha-
nism is that the hierarchical file structure is often mapped to the URL. Restructuring of
the filesystem then leads to a change of the URL. The conclusion of this considerations
is the fact that URLs are neither consistent nor stable. At a first glance it seems that
a PURL (Persistent URL) (see Section 4.4 for details) or a URN (Uniform Resource
Name) are possible solutions for this problem.

A URN is a persistent label of a resource. Several requirements on URNs are sum-
marized in [Sollins and Masinter, 1994]. It is a name with a global scope. This means
that a URN does not imply a location. A URN has to be globally unique and therefore
the same URN cannot be assigned to different resources. Furthermore it should not
be reused. If an object is deleted the URN of this object should not be assigned to
another resource. This guarantees consistency and a permanent lifetime of URNs. Ex-
isting name systems (e.g. ISBN (International Standard Book Number)) are supported
by the URN schema as well as future extensions of the scheme. Since URNs represent
names of locations the corresponding addresses have to be determined if such an URN
is requested. Most often the address of a location which is identified by a URN is rep-
resented by a URL. Therefore the URN has to be resolved in some way. In other words
the URN is translated into the corresponding URL.

Two systems implementing the URN recommendation are introduced in Section 4.5
and in Section 4.6.

4.4 PURL (Persistent URL)

The PURL Service1 is a HTTP redirections service. It was introduced in [Shafer et al.,
1996] as “a naming and resolution service for general Internet resources”. It follows the
URN concept. Generally spoken a PURL is a Persistent URL which provides a way
for assigning a name to an object which stays stable even if the object is moved to a
different location. The PURL service relies on indirection. This means that a PURL
doesn’t point directly to an Internet resource. It points to an HTTP resolution service.
This resolution service assigns a URL to the PURL (Persistent URL) an returns this
URL to the requestor.

But the PURL service has several drawbacks [Stone, 2000]. First of all it relies on
HTTP. On the one hand it needs an HTTP server as a host which is responsible for
resolving the PURL. On the other hand a PURL always represents an HTTP URL.
A second problem of the PURL service is the fact that it relies on DNS. If the domain

1http://www.purl.org
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name of a resolution server changes, the PURL changes too and therefore it should be
clear that in this case a PURL isn’t consistent anymore.

Besides these drawbacks there are some other limitations which make the PURL
Service unsuitable for a distributed component framework. Names of resources (PURL)
are defined by humans. As mentioned above this is not a good solution. Furthermore
PURLs are not updated automatically. This task has to be performed by the maintainer
of the resolve server.

4.5 The Handle System

According to [Han, 2002], the Handle System1 is “a comprehensive system for assigning,
managing, and resolving persistent identifiers, known as “handles”, for digital objects
and other resources on the Internet.” The Handle System was developed by CNRI
(Coporation for National Research Initiatives). It is a protocol specification and there
exists a reference implementation of it. The Handle System makes it possible for a
distributed computer system to store handles of resources and resolve those handles to
locate and access the resources. It provides persistent handles over the change of the
resource location. Handles in the Handle System can be used as URNs. They are
globally unique within the Handle System. Furthermore can a handle refer to multiple
instances of a resource

A handle consists of two parts. The prefix represents the naming authority and the
suffix represents a local unique name concerning the naming authority. Suffix and prefix
are separated by a forward slash. The next section introduces DOI (Digital Object
Identifier) System which is an implementation of the handle system.

4.6 DOI (Digital Object Identifier)

According to [DOI, 2004], the DOI (Digital Object Identifier) System2 is “a system
which provides a mechanism to interoperably identify and exchange intellectual property
in the digital environment”. It is a implementation of the Handle System. A DOI is a
persistent identifier and furthermore it is an implementation of URI [Berners-Lee et al.,
1998]. It is a standard for online content identification and governed by the International
DOI Foundation.

Objects which are identified by a DOI are called entities. A DOI is rather a name
of an entity than an address. The use of DOIs is not limited to the WWW. Rather it
can be used on every network.

A DOI consists of an alphanumeric string which is assigned to an entity as a label.
Furthermore some descriptions (meta-data) can also be assigned to the entity. The DOI

1http://www.handle.net
2http://doi.org
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has to be resolved in some way to get the corresponding resource where it is located.
This resolve process has to ensure persistency and is done by the Handle System (see
Section 4.5). The alphanumeric string consists of two components, called prefix and
suffix. The DOI prefix also consists of two components and always starts with “10.”
This distinguishes a DOI from any other Handle System implementation. The second
element of the prefix is a string that is assigned to the organization that wants to register
the DOI. The DOI suffix identifies the entity uniquely to a given prefix. It is separated
by a forward slash from the DOI prefix. A DOI suffix can be any alphanumeric string.
This can be any sequential number or an existing identifier (e.g. ISBN).For example
doi:10.1000/186 1 is a valid DOI.

It should be clear that the combination of prefix and suffix has to be unique otherwise
the mechanism would not work correctly. Therefore unique prefixes have to be assigned
to organizations. These organizations therefore have to ensure unique suffixes. However,
internal checks for uniqueness are performed at the registration process by the DOI
System. A unique identifier should not be reused in the DOI system.

4.7 DOLSA (Distributed Object Lookup Service
Algorithm)

DOLSA (Distributed Object Lookup Service Algorithm) is the addressing mechanism
of the Dinopolis middleware framework. The reason for the development of DOLSA
is the lack of existing addressing mechanisms which are consistent and robust against
object movement. The few mechanisms that are implemented do not scale well. DOLSA
was introduced and described in [Schmaranz, 2002b] and Schmaranz states about the
motivation of developing a new addressing mechanism:

. . . it became clear that consistency and robustness of object-addressing are
the most crucial features in a massively distributed system.

The goal that had to be achieved at the development process is a common way to provide
stable, globally unique identifiers. In DOLSA these identifiers are named handles. To
avoid name clashes, the term GUH (Globally Unique Handle) was introduced to name
such handles. A GUH always refers to the same object and it is stable against object
movement. If an object is deleted, its GUH must not be reused for any object. The
location where a GUH is stored, is not restricted. Therefore it is possible to store a
GUH anywhere.

Since a handle is an identifier that is independent from the physical location of an
object, some resolve process is necessary when requesting an object with a given handle.
In Dinopolis this resolve process is done by a distributed lookup-service (DOLSA). This
distributed lookup-service consist of three kinds of lookup-servers. The OLSs (Object

1This is the DOI of [DOI, 2004] available via http://dx.doi.org/10.1000/186.
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Lookup Servers) are distributed across the network and are responsible for mapping
GUHs to addresses that are internally used to retrieve objects. MSLSs (Master Server
Lookup Servers) determine which OLS (Object Lookup Server) is responsible for re-
solving a GUH. These MSLSs (Master Server Lookup Servers) are synchronized and
keep their information redundant. The third kind of lookup-servers are SLSs (Server
Lookup Servers). These are only cache server of data managed by MSLSs.

A handle is the combination of an Id of the responsible OLS and some local object
Id. Furthermore a GUH consists of three such handles. The BPH (Birthplace Handle)
always refers to the birthplace of an object. It is defined when an object is created and
it must never change during the lifetime of an object. Furthermore it is guaranteed
that the BPH can always be resolved. The BPH is also used to compare objects for
equality. The second part of the GUH is the MBPH (Moved Birthplace Handle). It
only contains data if the birthplace OLS of an object was taken offline and it is not
guaranteed that the MBPH can always be resolved. The third part of a GUH is the
CH (Current Handle). It represents an objects current residence. It is only updated if
an object is moved across OLS responsibility boundaries.

A more detailed consideration about further aspects of this algorithm such as moving
objects across servers and taking lookup-servers offline are out of scope of this thesis. As
mentioned above, a detailed description of this algorithm can be found in [Schmaranz,
2002a] and [Schmaranz, 2002b]. Furthermore there are some investigations about guar-
anteeing consistency during move operations, dealing with “fast-moving” objects, and
merging lookup-servers.
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The Dinopolis System Architecture

Dinopolis is a distributed middleware componentware framework. At the beginning of
this chapter the key features of Dinopolis are presented. After that the Dinopolis Object
is introduced. Besides DOLSA (Distributed Object Lookup Service Algorithm) (see
Section 4.7) it is one of the main parts of the Dinopolis Object system architecture.
It encapsulates arbitrary content and meta-data and provides functionality to access
this data. Furthermore it is addressable and therefore it is possible to interconnect
Dinopolis Objects with the interrelation mechanism describe in this thesis. Finally a
overview about all main modules of the systems is presented. An overall description
of the Dinopolis system architecture is presented by Klaus Schmaranz in [Schmaranz,
2002a].

5.1 Features of Dinopolis

Dinopolis is intended to ease application development. Therefore one of the main aims
of Dinopolis is providing a possibility for an easy integration of existing systems. But
it should also be possible to develop distributed applications from scratch. Network
transparency and a robust addressing mechanism are two further aspects taken into
account at the development process of Dinopolis. In addition the possibility to model
arbitrary relationships between components and objects should be supported in Dino-
polis. Out of these consideration the following cornerstones of Dinopolis are resulting:

• Dinopolis is platform as well as technology-independent. It is implemented in
C++, but other implementations are also possible. For example a prototype im-
plementation of the Dynamic Type Mechanism was written in Java.

• Dinopolis is a flexible and extensible middleware system. It has a very slim and
modular system kernel. The kernel modules can be loaded on demand. This keeps
the kernel as slim as possible.

• Existing systems such as filesystems or databases can easily be integrated in Dino-
polis. This task is managed by a flexible embedder concept.
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• A robust and consistent addressing mechanism is provided by Dinopolis. Objects
are identified by handles and these handles are robust against object movement
within the system.

• Dinopolis implements a highly sophisticated, distributed component model. Com-
ponents are configurable during runtime. This component model and the address-
ing mechanism allows it to work with objects and components distributed all across
the net.

• Relationships between components in Dinopolis are modeled by a highly sophis-
ticated interrelation mechanism. This interrelation mechanism is also used for
navigation through the object space. It stays consistent even when an intercon-
nected object is deleted.

• Dinopolis also supports a state of the art security concept, which has been included
within the whole development process of Dinopolis.

5.2 Dinopolis Objects

Functionality is provided to applications through distributed objects. These distributed
objects are addressable entities. They are identified within the Dinopolis system by
handles and they are called Dinopolis Objects .

Recapitulating:

• A Dinopolis Object is a component in the sense of componentware. Hence it
provides functionality to the outside world. There exists a highly sophisticated
security mechanism to control access to the Dinopolis Object .

• A Dinopolis Object is addressable across the network by the use of GUHs. As
described in the Section 4.7 these handles always refer to one and the same ob-
ject. The addressing mechanism in Dinopolis guarantees robustness against object
movement and stability against object deletion.

• A Dinopolis Object is attachable to interrelations. Thus it is possible to model
arbitrary relationships between Dinopolis Objects .

• A Dinopolis Object is configurable at runtime. This means that it is possible to
add or remove functionality without the need to rebuild the framework.

Figure 5.1 shows the internal structure of a Dinopolis Object . It shows that a Dinopolis
Object consists of the following:

Content A Dinopolis Object encapsulates content. This content can be accessed by a
content data handler. The Dinopolis Object can be asked for this handler.
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Figure 5.1: A simple Dinopolis Object

Meta-Data A Dinopolis Object can hold meta-data. This meta-data can be of arbitrary
type. It is organized in a tree structured container. Meta-data can be accessed by
a meta-data handler. The Dinopolis Object provides an operation to request this
handler.

Interrelations The interrelations part of a Dinopolis Object holds the information about
attached Interrelation Objects . This information is represented by endpoint ob-
jects. The interrelations part can be accessed via a interrelation handler. An
operation is provided by the Dinopolis Object to request this handler.

Operations provide functionality. They are comparable with methods known from ob-
ject oriented programming languages. It can distinguished between standard op-
erations which have to be provided by all Dinopolis Objects and extended oper-
ations. These extended operations heavily depend on the type of the Dinopolis
Object . Therefore they differ between different Dinopolis Objects .

Services also provide functionality. They are comparable with operations, but in ad-
dition they provide a user-interface to applications. This mechanism is necessary
because sometimes an in-depth knowledge of the internals of an object would be
needed to perform a specific task. But this would break the philosophy of Dinopolis
and therefore Services are provided.

Operations and Services provide functionality of Dinopolis Objects to applications. As
already mentioned, it is possible to add and remove such functionality of a Dinopolis
Object at runtime. This task is managed by the help of the Dynamic Type Mechanism.
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The types of a Dinopolis Object can be divided into static and a dynamic part. The
static part is represented by the Static Type of a Dinopolis Object . It includes a guar-
anteed base interface to provide access the internal structure of a Dinopolis Object .
Every Dinopolis Object has to provide this interface. Dynamic parts can be attached
or detached from Dinopolis Objects at runtime. They are called Dynamic Types and
provide a way to alter the functionality provided by a Dinopolis Object at runtime. All
functionality which is provided through a Dinopolis Object first has to be declared by
a Declaration and second it has to be defined by a Definition. Compared with object-
oriented programming languages Declarations declare the interface of an object while
Definitions provide the implementation of an object. Functionality is added to Dino-
polis Objects at runtime by attaching a Definition to it. This Definition provides the
implementation. Edmund Haselwanter gives a detailed description of the dynamic type
mechanism in his master’s thesis [Haselwanter, 2003].

5.3 Design Overview

Dinopolis provides a very modular and slim system architecture. Furthermore kernel
modules can be loaded when needed and unloaded when no longer needed. This provides
a flexible and extensible system architecture. In the following the main modules of the
Dinopolis system are briefly described:

Object Management Module is the central part of the Dinopolis system. It is respon-
sible for all operations which are dealing with the life-cycle. These are operations
for creating and deleting as well as loading and storing of Dinopolis Objects . It is
also responsible for the internal structure of a Dinopolis Object .

Address Management Module provides a stable address space for Dinopolis Objects.
It is responsible for managing GUHs which address Dinopolis Objects . These
handles are robust and therefore it is guaranteed that addresses remain stable
even when an object is moved to a different location. The address management
must be able to resolve any given GUH.

The address management module is divided into the three submodules. The OLS
are responsible for local object resolving. The SLS (Server Lookup Server) and
the MSLS (Master Server Lookup Server) performs global resolving.

Network Management Module provides transparent access to Dinopolis Objects that
are located on remote Dinopolis instances. No knowledge about the physical loca-
tion of an object is needed to work on them properly.

Interrelation Management Module is responsible for handling all different kinds of
interrelations between Dinopolis Objects . Since the focus of this thesis lies on
this Interrelation Management Module a detailed description of it can be found in
Chapter 6 and Chapter 7.
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External System Management Module manages all tasks that have to do with em-
bedding of external systems. The main tasks are registering and unregistering
of external systems as well as embedding and unembedding external systems. It
has to be possible to embed arbitrary external systems. This is done by the use
of so-called embedders. An embedder is comparable to a driver for external de-
vices in operating systems. At least an embedder has to support a request to load
data with a given address. Of course it is possible to extend an embedder with
additional functionality (e.g save data, create object . . . ).

Virtual System Management Module is responsible for managing so-called Virtual
Systems. Virtual Systems are combinations of several external, embedded sys-
tems. This combination appears as one single system. Consider as an example the
combination of a filesystem with a database. The content of a Dinopolis Object
that has its origin in this virtual system could reside in the filesystem, whereas
meta-data is stored in the database.

System Data Storage Module stores and loads the state information of a Dinopolis
Object . First of all this contains type information about the Dinopolis Object .
This is necessary to be able to reconstruct the state of a Dinopolis Object during
a load operation. The system data storage also plays an important role for the in-
terrelation management module. The information about attached interrelations is
made persistent within the system data storage. This circumstances are discussed
in detail in Section 6.6.

Kernel Access Management Module is the access point for applications to kernel func-
tionality. It is responsible to trigger security checks. These security checks are
performed by the security management module.

Security Management Module is a required kernel module. It is responsible for all
security aspects in Dinopolis. This security management module is as general
as possible. From that it follows that different security policies are possible for
different application scenarios.

Module Management Module is responsible for loading and unloading of kernel mod-
ules.

Configuration Management Module manages the bootstrapping process of a Dino-
polis instance. First of all the kernel access management module is instantiated.
All required kernel modules are loaded. After that process other modules are
loaded.
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Interrelations in Dinopolis

This chapter describes the technical concept of the Interrelation mechanism in Dino-
polis. It is shown how the mechanism works. Interrelation Objects are introduced and
the characteristics of these objects are shown. Furthermore Endpoints are introduced
and it is shown what they are good for. The correlation of interrelations to endpoints
is pointed out and the possibilities how to organize interrelations’ data are sketched.
Finally Implicit Interrelations are introduced in this chapter.

6.1 The Interrelation Model

Generally spoken, in Dinopolis interrelations are uniquely addressable connections, re-
lations or dependencies between arbitrarily many Dinopolis objects of arbitrary type or
parts of them. An interrelation consists of an Interrelation Object and several endpoint
objects. These endpoint objects represent anything that is connected by an interrelation.
As seen in the previous sections, stability against reconstruction of the object space is the
most critical and important feature of a highly sophisticated interrelation mechanism.
Since the addressing mechanism of Dinopolis (see Section 4.7) implements the concept
of GUHs this is not a problem at all. Interrelations and their attached endpoints are
always identifiable by GUHs and therefore a robust interrelation mechanism is guaran-
teed. Technically spoken endpoint objects are attached to both the Interrelation Object
and the Dinopolis Objects that are interconnected by the interrelation. On the one hand
it is possible to model n1 : n2 : . . . : nm dimensional relationships between objects with
this interrelation model. One the other hand interrelations in Dinopolis are bidirectional.
To be more precise, interrelations are rather multidirectional since interrelations are not
only two-dimensional but also n1 : n2 : . . . : nm dimensional. Multidirectional in this
context means that it is possible to reach all endpoints of an interrelation if only one of
them is known. In addition another consequence of multidirectional interrelations can
be identified. It is possible to model both directed and directionless interrelations.

Figure 6.1 shows an example of three Dinopolis Objects interconnected by interre-
lations. Dinopolis Object 1, 2 and 3 encapsulate some documents. The dashed lines
indicate logical relationships between Dinopolis Objects . Solid lines represent connec-
tions between Interrelation Objects and Dinopolis Objects . The following relationships
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Figure 6.1: Example of Interrelations between Dinopolis Objects

can be identified:

• Dinopolis Object 1 relates to Dinopolis Object 2. This relationship is directionless
and it is modeled by Interrelation Object 1.

• In addition Dinopolis Object 1 relates to Dinopolis Object 2. But this relation is
directed. Dinopolis Object 1 is the source and Dinopolis Object 2 represents the
destination of this relationship. It is equivalent to the hyperlink paradigm known
from the WWW. This relationship between Dinopolis Object 1 and Dinopolis
Object 2 is modeled by Interrelation Object 2.

6.2 The Interrelation Object

Logically spoken an interrelation in Dinopolis is a container of connections. It is rep-
resented by an Interrelation Object . A connection is modeled by two endpoint objects.
Endpoint objects are discussed in detail in the next section (see Section 6.3). Several of
the general requirements that are discussed in Chapter 3 lead to the fundamental design
decision that Interrelation Objects are Dinopolis Objects themselves. This decision has
several important impacts:

• Dinopolis Objects are addressable entities, hence interrelations are addressable
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over the network by GUHs. This allows to store interrelations anywhere on the
network.

• Every Dinopolis Object has some types. Thus the requirement that a way for
assigning types to interrelations has to be provided, is satisfied implicitly.

• The functionality of an Interrelation Object is easily extensible by the use of the
dynamic type mechanism the Dinopolis middleware framework provides for Dino-
polis Objects . This makes it possible to model arbitrary passive and active behavior
of Interrelations.

• Dinopolis Objects can hold arbitrary meta-data, thus it is possible to attach meta-
data to interrelations. It is also possible to assign meta-data to certain endpoints
of an interrelation.

• Interrelations always interconnect Dinopolis Objects , therefore it is possible to
create interrelations between interrelations.

• Security checks are performed individually for interrelations. Therefore access
permissions for interrelations can be controlled independently from the objects
that they interconnect.

These circumstances guarantee the highest possible integration of Interrelation Objects
within the Dinopolis system. Besides holding information about interconnected ob-
jects, Interrelation Objects also provide functionality to manage these interconnections.
Therefore operations for attaching and detaching Dinopolis Objects are provided. Fur-
thermore it is possible to resolve an interrelation in a certain way. A detailed discussion
about the way an interrelation can be resolved is given in Section 6.7.3. It should also
be clear that it has to be possible to make Interrelation Objects persistent. For this
purpose operations to create, store, load and remove Interrelation Objects are provided.
As mentioned above, Interrelation Objects are Dinopolis Objects and therefore these op-
erations are already provided by Dinopolis Objects . It is obvious that this circumstance
is a further benefit which results of the design decision that Interrelation Objects are
Dinopolis Objects themselves.

6.3 Endpoints of Interrelations

Interrelations interconnect arbitrary objects. In Dinopolis these connections are modeled
by Endpoint Objects. When in the following Endpoint Objects are meant the short name
“Endpoints” is used. An Endpoint represents everything that is interconnected by an
interrelation. As seen above this can be for example a Dinopolis Object , a part of
a Dinopolis Object or an Interrelation Object . Since interrelations in Dinopolis are
multidirectional they have to know about the Dinopolis Objects attached to them and
vice versa. This information is held by endpoints. It has to be distinguished between:
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Interrelation side Endpoint resides only in Interrelation Objects . Holds the informa-
tion about the attached Dinopolis Object .

Dinopolis side Endpoint As the name implies a Dinopolis side Endpoint is part of a
Dinopolis Object . It resides in the interrelations part of the Dinopolis Object and
it holds information about the attached Interrelation Object .

So endpoints are containers, that hold all the information about connections. One
Dinopolis Object may be attached multiple times to one interrelation. Since these are
different connections the interrelation holds different endpoints. Endpoints are managed
by Endpoint Containers. They provide operations to add and remove endpoints and to
retrieve certain endpoints.

Figure 6.2 shows an example of three Dinopolis Objects that are interconnected by
two interrelations. Dinopolis Object 1 with the GUH 0x0001 is interconnected with
Dinopolis Object 2 (GUH = 0x0002) by the Interrelation Object 1 (GUH = 0x0010).
Furthermore Dinopolis Object 1 relates to Dinopolis Object 3(GUH = 0x0003). This
relationship between Dinopolis Object 1 and Dinopolis Object 3 is modeled by Interrela-
tion Object 2 (GUH = 0x0020). To be able to distinguish easier between Interrelation
Objects and Dinopolis Objects , Interrelation Objects have a grey background and Dino-
polis Objects have a white background. Every Object contains an endpoint container
which holds the single endpoints. A dashed line indicates a connection between two
objects. The endpoints held by the endpoint containers of Interrelation Object 1 and
Interrelation Object 2 are Interrelation Side Endpoints. Hence the endpoints contained
in the endpoint containers of Dinopolis Object 1, 2 and 3 are Dinopolis Side Endpoints.
Every endpoint, both Interrelation Side Endpoints and Dinopolis Side Endpoints, hold
at least the following data:

GUH of the corresponding object of the other side of the connection (e.g. the endpoint of
the Dinopolis Object 2 in figure 6.2) It contains the GUH 0x0010 which identifies
the Interrelation Object 1. In contrast the second endpoint held by the endpoint
container of Interrelation Object 1 contains the GUH that identifies Dinopolis
Object 2 (0x0002).

Endpoint ID As a Dinopolis Object may be attached several times to the same Inter-
relation for different reasons, each connection needs a unique identifier. This Id is
generated by the Interrelation and it has to be unique within the interrelation. As
the name implies GUHs are globally unique within the object space and resulting
form that fact the concatenation of the GUH identifying the interrelation and the
endpoint ID is also globally unique. As can be seen in figure 6.2 the Interrelation
Object 1 holds two endpoints with different endpoint Id’s. The endpoint referring
to Dinopolis Object 1 has the endpoint Id 1 and the endpoint Id referring to Dino-
polis Object 2 has the endpoint Id 2. The situation looks a little bit different for
Dinopolis Object 1. Both endpoints referring to Interrelation Object 1 and Inter-
relation Object 2 have the same endpoint Id(id =1). It seems as if the endpoints

37



Chapter 6 Interrelations in Dinopolis

Endpoint

#GUH = 0x001

#EP_ID = 1

Endpoint

#GUH = 0x003

#EP_ID = 2

Endpoint-Container

Interrelation Object 2
(GUH = 0x020)

Endpoint-Container

Endpoint

#GUH = 0x001

#EP_ID = 1

Endpoint

#GUH = 0x002

#EP_ID = 2

Interrelation Object 1
(GUH = 0x010)

Dinopolis Object 3
(GUH = 0x003)

Endpoint-Container

Endpoint

#GUH = 0x020

#EP_ID = 2

Dinopolis Object 2
(GUH = 0x002)

Endpoint-Container

Endpoint

#GUH = 0x010

#EP_ID = 2

Dinopolis Object 1
(GUH = 0x001)

Endpoint-Container

Endpoint

#GUH = 0x010

#EP_ID = 1

Endpoint

#GUH = 0x020

#EP_ID = 1

Figure 6.2: Schematic View of Endpoints

id’s are ambiguous. But the concatenation of the GUH and the endpoint Id is
unique (0x010:1 vs. 0x020:1).

There exist cases, where interrelations do not interconnect whole Dinopolis Objects but
only parts of them. For example, consider the case of an anchor in an HTML document.
That anchor may identify a point within the content of the document. To model such
a link, a way has to be found to refer into the content of an object. This is done by
the use of an internal key to the object-subset. This key heavily depends on the type of
the Dinopolis Object ’s content. Therefore it is not possible to generate a general object-
subset mechanism and the content data handler of the Dinopolis Object generates this
key that identifies some part in the object-subset. Since the content data handler has
created the internal object-subset key, it is the only part which can interpret this key
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correctly. It has to be clear that therefore referring to the subset of a Dinopolis Object
is not guaranteed to be stable against object movement. If an interrelation points to an
object-subset the internal key is part of the Dinopolis side endpoint. Since it can also
be possible to refer to certain Metadata of the Dinopolis Object , the subset-key can also
be managed by the meta-data handler of the Dinopolis Object .

6.4 Semantics of Endpoints

To give semantics to an interrelation, it is possible to group endpoints within an interre-
lation. For this reason so called Endpoint Classification Sets are introduced. As known
from its mathematical sense, a set is a collection of distinguishable objects. In some
cases it might be desirable that the sets are well-ordered. Therefore a “well ordering
relation” can optionally be defined for a set . In mathematics various operations on
sets are defined. The most important ones are union, intersection and difference. These
set-operations are exactly what is needed to implement arbitrary resolve strategies on
interrelations. Of course it is possible to have more sophisticated set-operations. But
even if most of these operations are rather powerful, their software-implementation gen-
erally suffers from a lack of efficiency. The efficiency-problem of most of these operations
can be solved by caching. Therefore the implementation of sets in Dinopolis has to be
balanced between performance and memory efficiency.

As the name implies the elements of these interrelation-sets are endpoints. All end-
points of a set have something in common. In other words, they all have a certain
property. Every endpoint with a certain property is assigned to an Endpoint Classifi-
cation Set that represents this property. Consider as an example a hyperlink known
from the WWW. An interrelation of type hyperlink may have two Endpoint Classifica-
tion Sets . One set represents sources and the second set represents destinations of the
hyperlink-interrelation. When creating such a hyperlink the Endpoint referring to the
source document is assigned to the first Endpoint Classification Set . The other Endpoint
is assigned to the second Endpoint Classification Set which represents destinations. Of
course each Endpoint of an interrelation may be assigned to several different Endpoint
Classification Sets . Again consider as an example a hyperlink. But now it is a multi-
lingual hyperlink. Besides the Endpoint Classification Sets for source and destination
objects, several sets indicating the language of the endpoint (e.g. german-language) exist.

Consider as a further example figure 6.3. It shows the logical view of an interrelation.
Compared with the already presented examples (figure 6.1 and figure 6.2) again three
Dinopolis Objects are related in some way. But in this example the relationship is
modeled by only one Interrelation Object . The semantics of this Interrelation Object
are defined by the three Endpoint Classification Sets , Set A, Set B, and Set C. The
interrelation side endpoint which represents the connection to Dinopolis Object 1 is
assigned to all three sets. The endpoint referring to Dinopolis Object 1 is only in Endpoint
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Figure 6.3: The Interrelations logical view

Classification Set A and the remaining endpoint which refers to Dinopolis Object 2 is
assigned to Set C. It can also be seen that the Dinopolis side endpoints that are referring
to the Interrelation Object are part of Dinopolis Object 1, 2 and 3.

As already indicated a resolve operation is performed by executing some set operations.
In this example a thinkable resolve process would be as follows:

1. Starting from Dinopolis Object 1 the Interrelation Object which is referred by the
Dinopolis side endpoint is requested.

2. All interrelation side endpoints are returned which are in the same Endpoint Clas-
sification Set as the endpoint representing Dinopolis Object 1. As result of this
request the endpoints pointing to Dinopolis Object 2 and 3 are returned.

3. Starting from the result of the last operation another refinement of the resolve
result can be achieved by the following strategy. Return all endpoints that are in
Set C. This will return the endpoint which points to Dinopolis Object 3.

4. The last step to finish the resolve process properly is to get the Dinopolis Object
which is referred by the endpoint of the last step. In this case this would be
Dinopolis Object 3.
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Several kinds of Endpoint Classification Sets can be distinguished:

Explicit Sets are either predefined by the type of an interrelation or they can be created
explicitly. Consider again a hyperlink. It has two predefined sets. The first for
destination endpoints and the second indicating source endpoints. As already
mentioned it is possible to add sets manually to Interrelation Objects .

Implicit Sets are supported too. An example for a useful implicit set would be one,
that contains all Endpoints of the same type. Caching the results of mathematical
set-operations could be another reasonable case.

Default-Set Since resolve operations are mainly based on sets, every single Endpoint
has to be assigned to at least one of those. Therefore each interrelation has to
know a default-set, that holds all endpoints which are not assigned to a specific
set.

The sets of an Interrelation Object are managed by the Set Container. It provides
all functionality needed to organize sets and provides methods to add and remove sets
to/from an interrelation. A method to move endpoints between sets is also provided.
This operation has to be atomic on the set container, because each endpoint has to be
element of at least one set. Further the above mentioned set-operations are also provided
by the set container. These are needed for various resolve operations.

6.5 Meta-data

Arbitrary meta-data can be attached to Dinopolis Objects . Since Interrelation Objects
are Dinopolis Objects themselves it should be clear that meta-data can be attached to
Interrelation Objects . Meta-data in Dinopolis is organized in a tree-structured container.
The values of this structure are accessible via hierarchical keys.

Besides the general meta-data about the interrelation itself, it may be useful to hold
meta-data about its Endpoint Classification Sets and for each Endpoint it holds. There-
fore it is possible to attach meta-data for both endpoints and Endpoint Classification
Sets . For example meta-data about the interconnected Dinopolis Object may be use-
ful for performance reasons. Caching this information may prevent from unnecessary
accesses to the Dinopolis Object over the network. For the sake of uniformity this meta-
data is organized in the same way as the meta-data of Dinopolis Objects , i.e. as a
tree-structured container of hierarchical keys with values of arbitrary type.

6.6 Persistence

As seen above information about connections between Dinopolis Objects is managed by
Interrelation Objects . This information are Endpoints which are managed by the End-
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point Container and Endpoint Classification Sets which are managed by the Set Con-
tainer. It has already been mentioned that Interrelation Objects are Dinopolis Objects .
Hence, interrelations are addressable by GUHs and it is possible to store interrelations
anywhere on the net. There are several ways how this information about interrelation
is treated. It depends on this treatment how data is made persistent. Several proposals
are possible and described below. Please remember the internal structure of Dinopolis
Objects (see Section 5.2). It is mandatory to understand the following approaches:

• In the internal structure of Dinopolis Objects the encapsulated information is held
in the content part. Information about connections held by an Interrelation Object
can be seen as its content. In the first approach the content part of the Interre-

Operations

Services

Interrelations

Interrelation Object

Meta-DataContent

Dinopolis 
Object  

Dinopolis 
Object  

Figure 6.4: Interrelation Data treated as content

lation Object is used to hold the interrelation specific data. This can be seen in
figure 6.4. The advantage of this approach is that the clear design of Dinopolis
Objects is not broken. Loading and storing of Interrelation Objects is exactly the
same as loading any other kind of Dinopolis Objects . However two circumstances
have to viewed in more detail. It is not trivial to hold additional content within an
interrelation. For example such content may be an image which is used for visual-
ization purposes. If in this case content is requested from an Interrelation Object
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by the content handler, it has to be distinguished between interrelation data and
such additional content. The restriction to prohibit such additional data may solve
this deciding problem. A second aspect has to be considered. A virtual system
has to be able to handle the content of Interrelation Objects . It is not guaranteed
that every virtual system is able to handle the content of Interrelation Objects .
It should be clear that in such a case it is not possible to store an Interrelation
Object within this virtual system.

• In a second approach the static type “interrelation” extends the internal structure
of a Dinopolis Object by an additional “Interrelation Object part” as shown in
figure 6.5. This part encapsulates the information about Endpoint Classification

Operations

Services

Interrelations

Interrelation Object

Meta-DataContent

Interrelation Object Part

Dinopolis 
Object  

Dinopolis 
Object  

Figure 6.5: Interrelation extended by Interrelation Object part

Sets and endpoints of an interrelation. The main disadvantage of this approach is
that the clear design of the architecture of a Dinopolis Object is broken. A way
to store this “Interrelation Object part” has to be found. To provide a general
solution for this problem the design of Dinopolis Objects has to be changed. But
this is unacceptable since the slim design of Dinopolis Objects will be blown up
by this attempt. Another possibility to implement this approach is to use an
alternative place where the “Interrelation Object part” is stored. One opportunity
is to use the system data storage to handle this information.
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• In a further thinkable approach the interrelations part of the Dinopolis Object is
used to manage this task. Information about Endpoint Classification Sets and
endpoints are held in the interrelations part of the Interrelation Object . This case
allows it to hold additional content within an Interrelation Object .

Operations

Services

Interrelations

Interrelation Object

Meta-DataContent

Dinopolis 
Object  

Dinopolis 
Object  

Figure 6.6: Interrelation Data resides in interrelations part

The schematic view can be seen in figure 6.6, but it may look a bit confusing at
first glance. The interrelations part of a “non-Interrelation” Dinopolis Object only
holds information about each interrelation the Dinopolis Object is attached to.
Therefore a possibility to extend the interrelations part of an Interrelation Object
has to be provided. This means that the interrelations part of an Interrelation
Object encapsulates two different Interrelation data entities. On the one hand it
encapsulates the Endpoint Classification Sets and the endpoints which are identify-
ing attached Dinopolis Objects . On the other hand information about connections
the Interrelation Object is attached to is also encapsulated by the interrelations
part since it is possible to attach an Interrelation Object to an other Interrelation
Object .

This approach has several drawbacks. It should be clear that it has to be distin-
guished which data entity is requested. Further it would not be possible to attach
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Dinopolis Objects to this interrelations if the interrelation’s persistent data lies
in a read-only system. Some aspects about the impacts of read-only systems on
interrelations are discussed below.

The first approach, treating Endpoint Classification Sets and endpoints as content of an
Interrelation Object (see figure 6.4), has been chosen for a prototype implementation of
the interrelation mechanism of Dinopolis. Since the design of Dinopolis is modular and
flexible it is an easy task to change the policy how data is organized within Interrelation
Objects .

Another aspect comes into play when discussing how to load and store interrela-
tions. Since interrelations are multidirectional Dinopolis Objects which are attached to
Interrelation Objects they also have to hold information about this connection. This
information is represented by Dinopolis side endpoints (see figure 6.2). These endpoints
are managed by the endpoint container of the Dinopolis Object . Logically spoken this
container is the interrelation part of the Dinopolis Object . At a first glance it looks
like a very trivial challenge to make this data persistent. The interrelations part of the
Dinopolis Object is stored in the system by the virtual system management module. But
this straightforward approach is not always practicable:

• The system where the Dinopolis Object resides is a read-only system and therefore
it is not possible to store information in this system. Consider a CD-ROM as
an example for a read only system. It should be clear that it is not possible to
attach an Dinopolis Object residing in such an system to an interrelation. A store
operation of the interrelations part would fail. But this restriction is unacceptable.

• However, even if the Dinopolis Object resides in a writable system it could be unde-
sired to store information about attached interrelations in this system. Consider a
Dinopolis Object encapsulating a document stored on a user’s personal computer’s
hard-disk. This document is a very good and interesting scientific paper and many
people would like to refer it by the use of interrelations. For every citation of this
article an endpoint has to be stored on the user’s private hard-disk. If too many
people would like to link to this document, the system could be swamped with the
extensive write accesses. It may be possible that users hard-disk run out of disc-
space if it is a small system. Therefore the user may permit storing information
about interrelations on his personal computer.

6.6.1 System Data Storage

The result of these considerations is the need for a general way for Dinopolis Objects to
make the information about connections persistent. Therefore and among other things
the System Data Storage is introduced.

The System Data Storage is a kernel module of the Dinopolis system. It is responsible
for storing and loading state information of Dinopolis Objects . In other words, Dynamic
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Definitions which are attached to a Dinopolis Object may have a state, which has to be
stored, when the object is removed from memory. Since these Definitions are “gener-
ated” by Dinopolis kernel modules, Virtual Systems are generally not able to hold this
information. Therefore the data is stored in the System Data Storage. Since Definitions
themselves have to know how their data is stored, they have to provide methods which
are called when the store operation of the Dinopolis Object is triggered. This behavior
can be provided by using the hook pattern. The hook pattern is described in [Schmaranz,
2002a].

Furthermore it is possible to store and load information about attached interrelations
within the system data storage. As seen above it is not guaranteed that the Virtual
System is able to store this data. The same applies for the persistent data: the Object
Management Module needs to manage an object’s type information (static type, dynamic
types, . . . ).

Data chunks are identified in the System Data Storage by the GUH of the Dinopolis
Object and a qualifier. This qualifier represents a name for the Dynamic Definition
which state has to be stored. The interrelations part of a Dinopolis Object is defined
by a Dynamic Definition. Therefore a qualifier identifying this definition is used when
storing or loading data held in the interrelations part of the Dinopolis Object .

6.7 How the interrelation mechanism works

So far this chapter described the model of interrelations as well as the main data-
structures used by the mechanism. Now it is time to sketch how the mechanism works
in general. Therefore operations to work properly with interrelations are introduced in
this section. A use case scenario considering as an example a hyperlink that is modeled
with this interrelation mechanism is presented in Section 7.1. It has to be distinguished
between life-cycle operations, administrative operations, and resolve operations. These
are discussed in detail in the following. For further information about some of these
operations please look at Chapter 8. It gives a detailed description of some selected
processes and algorithms applying Dinopolis Objects .

6.7.1 Life-cycle Operations

The possibilities how interrelation specific data is organized are already presented in this
chapter. Now the operations dealing with this data-persistence are discussed. These op-
erations come into play whenever the life-cycle of an object changes. Life-cycle operations
are:

• Create

• Delete
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• Load

• Store

As seen above it has to be distinguished between:

Interrelation Object If the data of an Interrelation Object is treated as content, it is
stored in the virtual system where the Interrelation Object resides. In this case the
virtual system has to be able to handle this data and the life-cycle operations are
propagated by the interrelation management module to the object management
module. In all other cases when the data is not treated as content alternative ways
to make this data persistent are needed. One of these alternatives is the system
data storage.

Interrelations part of Dinopolis Object Since it is not always possible to store this
information within the virtual system where the Dinopolis Object resides, it is
handled by the system data storage. However, the object management module is
responsible for all life-cycle operations applying Dinopolis Objects .

6.7.2 Administrative Operations

Several operations are required to be able to manage interrelations. Therefore the inter-
relation management module provides operations to administrate Interrelation Objects .
These operations are as follows:

• Attach Dinopolis Object to an Interrelation Object

A new connection between Interrelation Object and Dinopolis Object is created.
Therefore a new endpoint representing the Dinopolis Object is added to the End-
point Container In addition the endpoint can be added to several Endpoint Clas-
sification Sets . This step is optional. If it is not performed the endpoint is auto-
matically assigned to the default set. Further, meta-data describing this endpoint
can be added to the Interrelation Object in this operation.

To complete the attach operation an endpoint representing the Interrelation Object
has to be added to the interrelations part of the interconnected Dinopolis Object .

• Detach Dinopolis Object from an Interrelation Object

The endpoint representing the connection between the Interrelation Object and the
given Dinopolis Object is removed. The endpoint is also removed from all Endpoint
Classification Set and all optional meta-data about this endpoint is removed, too.

It is also required to remove the endpoint representing the Interrelation Object from
interrelations part of the interconnected Dinopolis Object . If this is not possible
the detach operation has to be delayed or a rollback has to be performed.
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• Create Endpoint Classification Set

Additional Endpoint Classification Sets could be created within an Interrelation
Object .

• Delete Endpoint Classification Set

An Endpoint Classification Set can be removed from an Interrelation Object at
runtime. If it is not possible to remove that set, removal will have to be inhibited.
This case may occur if a Endpoint Classification Set is part of the Static Type of
the Interrelation Object or if it is essential for a resolve operation.

• Assign an endpoint to an Endpoint Classification Set

• Remove an endpoint from Endpoint Classification Set

All of these operations are called on Interrelation Objects only, but internally some of
them have to interact with the interconnected Dinopolis Object (e.g. detach Dinopolis
Object).

6.7.3 Resolve Operations

The Interrelation Object provides several operations in the sense of the Dinopolis ar-
chitecture to get endpoints which represent attached Dinopolis Objects . First of all it
is possible to request all endpoints which are attached to the interrelation. Secondly
operations are provided to resolve an interrelation. Resolve in this context means that
depending on a given endpoint, (several) endpoints are returned. The behavior of these
resolve operations depends on the Static and Dynamic Type of the Interrelation Ob-
ject . A detailed description about resolve aspects of interrelations is given by Thomas
Oberhuber in [Oberhuber, 2004]. Further it is possible to ask a Dinopolis Object for
its attached interrelations. This functionality is provided by a so called Interrelation
Handler. This handler is described in detail in Section 7.3.3.

6.8 Implicit Interrelations

Up to now the technical concept of interrelations which are created explicitly by clients
was discussed in this chapter. It was seen that these so called Explicit interrelations
are Dinopolis Objects and therefore they are addressable by GUHs. But besides them
so-called Implicit Interrelations also exist. These implicit interrelations are used to
map object relationships of existing embedded systems into the Dinopolis system. Such
relationships are for example a parent-child relationship in a filesystem. A symbolic link
in a filesystem also represents such a system immanent relationship.

Dinopolis has to provide an opportunity to easily embed existing systems. This task is
managed by the Virtual System Management Module. This module also has to provide
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a way to navigate throw the embedded system. It should not be surprising that implicit
interrelations are also used to navigate through the embedded system. Furthermore they
are not managed by the interrelation management module but by the Virtual System
Management Module.

As the name implies, implicit interrelations are generated implicitly and they have
there origin in external systems. One other important difference compared with explicit
interrelations can be identified. Implicit Interrelations are no Dinopolis Objects . The
result of this fact is that implicit interrelations are not addressable by GUHs. Further-
more this means that is it not possible to work on implicit interrelations directly, as it
is done with explicit ones.

Therefore the only way to “resolve” an Implicit Interrelation is to request all objects,
that are attached to it, which is done by a call on the corresponding Endpoint directly.
Hence the Endpoints have to hold all the data that is needed to “resolve” the Implicit
Interrelation. This information is largely dependent on the unit (e.g. a Virtual System),
that holds the objects, which are interconnected by an Implicit Interrelation. Therefore
this unit either creates the Endpoints for the Implicit Interrelations itself or it provides
the information that is necessary to create them to Dinopolis Objects . Hence it is
guaranteed that an Endpoint can retrieve all objects of the Implicit Interrelation that
it represents from the corresponding embedded system.

Working with Dinopolis Objects, that are interconnected with Implicit Interrelations
is mostly the same as working with any other kind of Dinopolis Objects . The only major
difference is that it is not possible to request those Interrelations themselves from the
according Endpoints. It is only possible to retrieve all objects “attached” to an Implicit
Interrelation.

As already mentioned implicit Interrelations are used to navigate through external
systems. Consider as an example a filesystem. Figure 6.7 shows a sample sector of the
structure of someone’s home directory in an unix filesystem. Three directories (~/, doc
and src) and two files (Thesis.pdf and Thesis.tex) can be seen in this sample. A
parent-child dependency can be identified between the home directory (~/) and the doc

as well as the src directory. The document Thesis.pdf is contained in directory doc

and the file Thesis.tex is contained in the folder src. Interrelations.pdf which is
contained in the directory ~/ represents a symbolic link to the document Thesis.pdf.
In figure 6.7 this relationship is indicated by the arched dashed arrow.

When navigating through an external system, first one or more entry points are re-
quested from the appropriate Virtual System. In the example above, the user’s home
directory (~/) represents one entry point for this external system. An entry point rep-
resents a not yet loaded Dinopolis Object for the requesting client. It can be asked
for its implicit interrelations. This interrelations return a collection of (not yet loaded)
Dinopolis Object . Therefore it is possible to navigate through the extended system.
This means for the example shown in figure 6.7 that a request for implicit interrelations
on the entry point would return the interrelations representing the parent-child inter-
relation too the directories doc, src and Interrelations.pdf. Requesting implicit
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Figure 6.7: Example of a filesystem

interrelations from Interrelations.pdf returns a symlink interrelation which points
to the document Thesis.pdf. It is possible to follow this interrelation. Up to now no
Dinopolis Object is completely loaded but when Thesis.pdf is requested the Dinopolis
Object that encapsulates this document is completely loaded.

This navigation with implicit interrelations is also used to find a location for creating a
new Dinopolis Object within the external system. Please note that implicit interrelations
are managed by Virtual System rather than by the Interrelation Management module.
Moreover it is possible that implicit interrelations have their origin in the content of
a Dinopolis object. As an example consider a anchor in a HTML document. In this
case the content handler of the Dinopolis Object may extract this link information and
provide them through implicit interrelations to the client.
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Design Details

This chapter shows some selected design details of the interrelation mechanism in Dino-
polis. It is the result of the evolution of the design process of the interrelation manage-
ment module. As already mentioned in the introduction of this thesis (Chapter 1) the
work on this module was undertaken in teamwork by Thomas Oberhuber and me. We
have split the topics of our master’s theses. Therefore a very focused enumeration of all
design details of the interrelation management module is presented here. Thomas was
concentrated on the design of Interrelation Objects , especially on the design of Endpoint
Classification Sets [Oberhuber, 2004]. The inspection of design issues in my thesis deals
with the situation at the Dinopolis Object side.

First of all in this chapter, a use case scenario is presented. It sketches the usage of an
interrelation of type hyperlink known from the traditional WWW. Then some software
requirements are presented. This consideration is focused on requirements Dinopolis
Objects have to fulfill concerning interrelations. Another section in this chapter deals
with submodules and classes of the interrelation management module. Again the focus
lies on Dinopolis Objects . Therefore Endpoints, endpoint containers and the interrelation
handler are viewed in detail. Finally this chapter specifies some processes and algorithms
needed to work with interrelations properly.

7.1 A Use Case Scenario

This scenario describes the application level use cases of an interrelation of type hyper-
link. A hyperlink is a directed relation between two objects (e.g. documents, movies,
images etc. ) or two sets of objects. Three possible examples of Hyperlinks are consid-
ered. A hyperlink with one source and one destination represents a 1 : 1 hyperlink. It
is similar to the link definition known from HTML. When one source relates to several
destinations it is a 1 : m hyperlink and the general case of several sources are intercon-
nected with several destinations are n : m hyperlinks. All of these circumstances can
be modeled with n : m Interrelation Objects of static type hyperlink. Such a hyperlink
can hold meta-data to provide additional information about itself and its source and
destination objects. Figure 7.1 shows a 1 : 1 hyperlink modeled with an Interrelation
Object .
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Figure 7.1: Use Case Scenario hyperlink-interrelation

Use Case: Create a new Hyperlink

This use case describes how two or more objects are interconnected by a hyperlink.
Several steps must be performed to achieve this:

1. create new empty hyperlink interrelation:

a) create new empty standard interrelation object.
This interrelation has the static type Hyperlink. From this it follows that
it has two Endpoint Classification Sets . One for source objects and the
other one for destination objects.

b) create additional Endpoint Classification Sets within the interrelation.
This step is optional and has not to be performed at all times.

2. attach sources to the hyperlink.

One or several Dinopolis Objects are attached to the interrelation. They are
also assigned to the source Endpoint Classification Set . If additional Endpoint
Classification Sets exist, endpoints would be assigned to certain of these sets.
Finally meta-data for this endpoints is added to the Interrelation Object .

3. attach destinations to the Interrelation Object .

One or several Dinopolis Objects are attached to the interrelation. They
are also assigned to the destination Endpoint Classification Set . If addition
Endpoint Classification Sets exist, endpoints would be assigned to certain of
these sets. Finally meta-data for this endpoints is added to the Interrelation
Object .

4. attach interrelation to the Dinopolis Objects

Endpoints representing the Interrelation Object are attached to all Dinopolis
Objects which were attached to the Interrelation Object in the previous two
steps.
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Use Case: Attach Dinopolis Object to a hyperlink

The following steps can be outlined:

1. At the Interrelation Object

An endpoint that represents the Dinopolis Object is assigned to the correct
Endpoint Classification Set . This is either the set which identifies sources
or the set which identifies destinations. If additional Endpoint Classification
Sets exist, endpoints would assigned to certain of these sets. Additionally
meta-data for the endpoints can be added optionally.

2. At the Dinopolis Object

An endpoint which represents the Interrelation Object is attached to the Dino-
polis Object .

Use Case: Detach Dinopolis Object from a hyperlink

Two steps must be performed to detach a Dinopolis Object from the hyperlink:

1. At the Interrelation Object :

The given source or destination endpoint is removed from all Endpoint Clas-
sification Sets it is assigned too. Then it is removed from the endpoint con-
tainer. Furthermore available meta-data about this endpoint is removed.

2. At the Dinopolis Object :

The endpoint representing the interrelation is detached from the interrelations
part of the Dinopolis Object .

Use Case: Delete hyperlink

To delete a hyperlink all attached Dinopolis Objects have to be detached and the
following steps have to be performed:

1. At the Dinopolis Object :

The endpoint representing the interrelation is detached from the interrelations
part of the Dinopolis Object .

2. The Interrelation Object is removed. This is only possible if all attached
Dinopolis Objects were detached correctly in the previous step.

Use Case: Resolve Hyperlink

Resolving a hyperlink means that starting from a source the corresponding desti-
nation object is returned. In this use case it is assumed that the hyperlink is a 1 : 1
hyperlink. This means it exist one source and one destination object. Furthermore
it is assumed that both objects are only attached to this hyperlink interrelation.
It follows:
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1. At the source Dinopolis Object

The endpoint representing the Interrelation Object is requested. Then the
Interrelation Object is fetched.

2. At the Interrelation Object

If the requesting Dinopolis Object is a source object the corresponding source
endpoint is requested from the interrelation and the destination Dinopolis
Object is returned.

If the requesting Dinopolis Object is no source object it is not possible to
resolve the interrelation properly, and the process terminates.

It should be clear that depending on the Endpoint Classification Sets several pos-
sibilities to resolve a hyperlink are thinkable. Consider a multilingual document.
Starting from the german source document a desired resolve strategy would be
to return the corresponding destination document which is written in the same
language as the source document. In this case the object which encapsulate the
german destination document would be returned. Thomas Oberhuber gives a de-
tailed discussion about resolve aspects of interrelations in [Oberhuber, 2004].

Use Case: Get all interrelated objects

For a given object it may be of general interest to get all objects which are inter-
connected to it. Thinkable applications therefore are “back-links” or link maps.
This use case describes how it is possible to achieve this. Starting from a Dinopolis
Object that represents the destination of a hyperlink the following steps has to be
performed:

1. At the starting Dinopolis Object

It is assumed that this Dinopolis Object relates only to one interrelation.
Therefore it holds only one endpoint. First of all this endpoint is requested.
With this endpoint it is possible to fetch the Interrelation Object .

2. At the Interrelation Object

All source endpoints are requested. Now it is possible to get all handles of
the corresponding source Dinopolis Objects .

3. The interrelated Dinopolis Objects are returned

There exist several use cases which are dealing with meta-data. Since a detailed consid-
eration on aspects of meta-data in distributed systems is far beyond the scope of this
thesis, this use cases are skipped here.
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7.2 Software Requirements

In addition to the general requirements on interrelations which were proposed in Chap-
ter 3 this section sketches some selected software requirements.

The Interrelation Management module of the Dinopolis framework has to be extensi-
ble and flexible. Future evolution in the sense of exchanging and extending functionality
should be possible without the need for basic redesigns. Therefore the general require-
ments proposed in Chapter 3 are observed during the development process of the inter-
relation mechanism of Dinopolis. Concerning these requirements, interrelations have to
be type-able and should support meta-data. Furthermore they have to be addressable
and it should be possible to create interrelations between interrelations. These require-
ments and the facts that Dinopolis Objects are addressable, can hold meta-data, and are
extensible by Dynamic Definitions lead to the most important software requirement of
the interrelation management module:

⇒ Interrelations have to be Dinopolis Objects

By following this software requirement all above mentioned general requirements on
interrelations are satisfied implicitly. Furthermore interrelations being Dinopolis Objects
guarantee the highest possible integration of interrelations within the Dinopolis system.

An Interrelation Object holds the information about attached Dinopolis Objects . It
was shown that interrelations should be multidirectional as well as multidimensional.
The following software requirement can be derived:

⇒ Connections have to be represented by endpoints.

One endpoint represents the Interrelation Object , the second endpoint represents the
Dinopolis Object of the connection. Since interrelations have to be multidimensional it
must be possible to attach several endpoints to one Interrelation Object . Furthermore
it must be possible to group these endpoints within the Interrelation Object to give the
semantics to an interrelation. The Interrelation Object has to provide operations to
request endpoints. Adding and removing an endpoint also has be supported. Further
it should be possible to organize the grouping of endpoints within the Interrelation
Object . To be able to perform this task the Interrelation Object has also to provide
some operations.

Besides a robust addressing mechanism, a bidirectional interrelation mechanism is the
key for robustness against object movement. Therefore interrelations are bidirectional.
To achieve this it follows:

⇒ Dinopolis Objects must hold endpoints

As already mentioned these endpoints held by the Dinopolis Object represent the corre-
sponding Interrelation Objects of the connections. It has to be assured that Dinopolis
Objects do not need to know too much about the mechanisms dealing with interrelations.
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For modularity reasons, the Dinopolis Object themselves should not be bothered with
managing their interrelations. It follows:

⇒ Dinopolis Objects have to provide an Interrelation Handler

This interrelation handler provides all the functionality needed to work on the Dinopolis
Object side of the interrelation properly. Therefore it is possible to ask this Interrelation
handler for information about the interrelations, the Dinopolis Object is attached to.
In addition an Interrelation Object must also provide functionality to request informa-
tion about attached Dinopolis Objects . Furthermore it should be possible to fetch the
corresponding objects. As a result of these considerations it can be said:

⇒ It must be possible to request endpoints

A last aspect comes into play when discussing software requirements in this thesis.
Remember that interrelations also have to be consistent against object deletion. When
a Dinopolis Object is deleted, the corresponding endpoint of the connection has to be
informed in some way to be able to react on the pending object deletion request. This
lead us to the following requirement:

⇒ Deleting a Dinopolis Object has to result in detaching it from all In-
terrelation Objects it is attached to

If it is not possible to detach the Dinopolis Object from all Interrelation Objects the
pending deletion request has to prevented or delayed. Therefore it should be clear that if
this requirement is not satisfied, it is not possible to guarantee a consistent interrelation
mechanism concerning object deletion.

For a detailed description of all identified software requirements please again have a
look at Thomas’ thesis [Oberhuber, 2004]. Thomas sketches all identified user require-
ments in his thesis.

7.3 Submodules and Classes

This section sketches some submodules and classes of the Interrelation Management
module of the Dinopolis middleware framework. The focus lies on classes and submod-
ules of the interrelations part of Dinopolis Objects . These are endpoints, the endpoint
container and the interrelation handler. It is mentionable that the structure and the
interface of Dinopolis side endpoints do not differ much from Interrelation side end-
points. This statement also is valid for endpoint containers managing either Dinopolis
side endpoints or Interrelation side endpoints.

Please refer to Thomas Oberhuber’s master’s thesis [Oberhuber, 2004] for other sub-
modules whose detailed description is missing here.
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7.3.1 Endpoints

Endpoints are dealing with information about connections between Interrelation Ob-
jects and Dinopolis Objects . They encapsulate this data and provide an interface to
manipulate this data. An endpoint holds the following data.

GUH refers to the corresponding object. It is used to provide bidirectional connections.
In the case of Dinopolis Object side endpoints the corresponding object is an Inter-
relation Object . In the other case of interrelation side endpoints the GUH refers
to a Dinopolis Object .

Endpoint Identifier consists of the GUH of the Interrelation Object and an internal
identifier. It is used to identify an endpoint within an Interrelation Object uniquely.
It is generated by the interrelation and this identifier is unique within the generat-
ing interrelation. The concatenation of interrelation GUH and internal identifier
is globally unique.

Object Subset Key is used to let an interrelation point to somewhere within a Dino-
polis Object . As Interrelations may refer to some part of Dinopolis Objects , an
internal key to object-subsets is necessary. As the exact implementation of this
key heavily depends on the type of the Dinopolis Object ’s content. The Content
Data Handler is responsible for its handling. Since Endpoints can also represent
connections to certain meta-data of Dinopolis Objects , in this case the object subset
key is requested from the meta-data Handler too.

Note that only Dinopolis Object side endpoints would have an object subset key.
In this case they are called Subset Endpoints.

Sometimes it may be useful to cache descriptive data about the other side of a connection
(e.g. the type of the corresponding object), because of performance issues. Therefore
this data can be held within the endpoint. This behavior depends on the policy how
endpoints are organized internally.

Besides holding information about interrelations an endpoint always provides the fol-
lowing interface:

• Get handle of the attached object

This method returns the GUH of the corresponding object. If the endpoint is
a Dinopolis Object side endpoint, the returned GUH identifies the corresponding
Interrelation Object . In the other case, if the endpoint is an interrelation side
endpoint, the GUH of the corresponding Dinopolis Object will be returned.

• Get Endpoint Identifier

The Endpoint Identifier of this endpoint is returned
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There are no set methods provided by an endpoint. The reason for this circumstance is
the fact that the GUH and Endpoint Identifier are set during the creation process of the
endpoint. It is not allowed to change their values during the lifetime of the endpoint.

As mentioned above, in the case that an interrelation refers to some part of a Dinopolis
Object (e.g. content, meta-data) a Dinopolis Object side endpoint has an Object Subset
Key and is called Subset Endpoint. Subset Endpoints provide methods to set this subset
key as well as to request this subset key.

7.3.2 Endpoint Container

The main task of the Endpoint Container is to manage the organization of all endpoints
within an Interrelation Object or Dinopolis Object . Therefore it must be able to hold
endpoints and provide methods for accessing them. It is possible to iterate through the
container’s elements.

It is not a public interface of the Dinopolis Object . This means that the methods
provided by the Endpoint container can only be called internally. If it is the Endpoint
container of an Interrelation Object , these methods are only callable by the Interrelation
Object itself. In the other case, if it is the endpoint container of the interrelations part
of a Dinopolis Object , these methods are only accessible by the interrelation handler and
by the corresponding Interrelation Objects . In the following the methods provided by
an endpoint container are listed:

• Add an endpoint

A new endpoint is inserted in the Endpoint Container.

• Remove an endpoint

An endpoint with an given identifier is removed. If this endpoint is not contained
in the Endpoint Container, an exception will be thrown.

• Get a certain endpoint

The endpoint with the given Identifier is returned. If this endpoint is not contained
in the Endpoint Container an exception will be thrown.

• Get all endpoints

An iterator on the Endpoint Container is returned.

• Get the number of endpoints

The number of all endpoints held by this Endpoint Container are returned.
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7.3.3 Interrelation Handler

The Interrelation Handler provides all the interrelation-related functionality that other
modules and applications need from Dinopolis Objects . Applications, modules and other
Dinopolis Objects can request an Interrelation Handler from a Dinopolis Object . The
Interrelation Handler provides some general operations:

• Request an endpoint

An endpoint with a given identifier is requested from the Dinopolis Object .

• Request all endpoints

All endpoints which are held in the interrelations part of the Dinopolis Object are
returned.

• Request number of endpoints

The number of all endpoints held by this Dinopolis Object are returned.

Please note that all endpoints held by the interrelations part of a Dinopolis Object
represent connections to Interrelation Objects .
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Processes and Algorithms

This chapter shows some selected interrelation-specific processes. The focus lies on op-
erations which are provided by the Interrelation Handler and on two operations that
are needed internally to be able to add endpoints to a Dinopolis Object and remove end-
points from a Dinopolis Object . This chapter is adapted from the corresponding chapter
of the interrelation management module design document [Oberhuber and Thalauer,
2004]. Furthermore not all processes are presented here because this would be way be-
yond the scope of this thesis. In contrast Thomas Oberhuber describes in [Oberhuber,
2004] the following processes in detail:

• Create Interrelation

• Attach Dinopolis Object to an Interrelation

• Detach Dinopolis Object from Interrelation

• Resolve an Interrelation.

8.1 Processes concerning the Interrelation Handler

All interrelation-related functionality provided by a Dinopolis Object is delegated to
the Interrelation Handler. Therefore a Dinopolis Object provides a basic operation to
request its Interrelation Handler. In this section some general operations provided by
the Interrelation Handler are described:

8.1.1 Get an Endpoint

An endpoint is requested from an Dinopolis Objects . This endpoint represents a con-
nection to an Interrelation Object the Dinopolis Object is attached to. This process can
be outlined as follows:

1. The Dinopolis Object is asked for its Interrelation Handler.
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2. The operation getEndpoint is called on the Interrelation Handler. The endpoint
Identifier is passed as argument to this operation.

3. The internal method getEndpoint(EndpointID id) is called on the Endpoint
Container, which returns the desired endpoint

4. The desired Endpoint is returned to the caller.

If the endpoint with the given endpoint identifier is not attached to the Dinopolis
Object , an exception will be thrown.

8.1.2 Get all Endpoints

A request for all endpoints held in the interrelations part of a Dinopolis Object is called
on its Interrelation Handler.

1. The Dinopolis Object is asked for its Interrelation Handler.

2. The operation getAllEndpoints is called on the Interrelation Handler. This re-
quest is forwarded to the endpoint container.

3. An Iterator on all attached endpoints is returned to the caller.

If no endpoints attached to the Dinopolis Object , an empty iterator will be returned.

8.1.3 Get number of Endpoints

A request for the number of Interrelations that the Dinopolis Object is attached to, is
called on the Interrelation Handler of the Dinopolis Object :

1. The Interrelation Handler is requested from the Dinopolis Object .

2. The internal method getNumberOfEndpoints() is called on the Endpoint Con-
tainer, which returns the number of all attached endpoints.

3. The Interrelation Handler then returns the number of attached endpoints to the
caller.
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8.2 Internal functions of Dinopolis Objects

Since Interrelations are bidirectional connections in the Dinopolis architecture, a request
for attaching a new Dinopolis Object needs interaction with the Object Management
Module. After the new endpoint is attached to the Interrelation Object ; the Dinopolis
Object is requested from the Object Management Module and a new endpoint which
represents the Interrelation Object is attached to this requested Dinopolis Object . In
the other case, if a Dinopolis Object has to be detached from an Interrelation, the Dino-
polis Object is requested from the Object Management Module and the endpoint which
represent the Interrelation Object will be detached from the Dinopolis Object .

Therefore a Dinopolis Object provides two internal operations. One which allows to
add an endpoint to the Dinopolis Object . And another operation which removes an
endpoint from the Dinopolis Object . These two special operations are accessible by
Interrelation Objects only:

8.2.1 Adding an Endpoint to a Dinopolis Object

1. When a Dinopolis Object is attached to an Interrelation Object , this Interrelation
Object contacts the Dinopolis Object to register the new connection. Therefore
the Dinopolis Object provides an internal method to add a new Endpoint to the
interrelations part of the Dinopolis Object by passing the GUH of the Interrelation
Object , the Endpoint Identifier, and a optional key to a subset of the Dinopolis
Object .

2. Request a new empty endpoint from the Endpoint Container.

3. Assign the Endpoint Identifier to the new Endpoint.

This Endpoint Identifier was generated within the Interrelation Object . It is unique
within the Interrelation Object .

4. If a key to a Dinopolis Object-subset is given, add it to the Endpoint.

5. Register the new Endpoint with the Endpoint Container.

8.2.2 Removing an Endpoint from a Dinopolis Object

1. When a Dinopolis Object is detached from an Interrelation Object , this Interrela-
tion Object contacts the Dinopolis Object to remove the connection. Therefore the
Dinopolis Object provides a internal operation to remove an Endpoint from the
interrelations part of a Dinopolis Object by passing the Endpoint Identifier.

2. Call the remove method on the Endpoint Container an pass the Endpoint Identifier
as argument. If the desired Endpoint does not exist, an exception will be thrown.
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8.3 Detaching a Dinopolis Object from all Interrelation
Objects

A request for deleting a Dinopolis Object requires detaching it from all Interrelation
Objects . The following algorithm describes the way this is done:

1. At the Dinopolis Object which should be deleted

Request all endpoints which are held by the endpoint container of the interrelations
part of the Dinopolis Object

2. For all endpoint which are returned in the last step.

Fetch the Interrelation Object which is represented by the endpoint. Detach the
endpoint which represents the Dinopolis Object .

3. The Dinopolis Object is detached from all Interrelation Objects

Now it is possible to delete the Dinopolis Object . Since object deletion is managed
by the object management module it it is beyond the scope of this chapter and
therefore a detailed description is skipped here.
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Chapter 9

Conclusion and Outlook

9.1 Conclusion

Within a distributed component system it has to be possible to model arbitrary rela-
tionships between objects and components and parts of them. In existing distributed
systems these relationships are often modeled by the use of hyperlinks. But it was shown
in this thesis that these hyperlinks are a rather poor concept to model such relationships.
Some important requirements are not fulfilled:

• Interrelations between objects should be robust against object movement and sta-
ble against object deletion. In other words, the “dangling link syndrome” has to
be prevented. On the one hand a stable addressing mechanism is required to reach
this goal. It is further necessary to strictly separate between addressing, structure,
and navigation. On the other hand bidirectional connections are also required to
achieve robustness and consistency.

• Interrelations should be objects themselves. On the one hand this has the ben-
efit that they are addressable and therefore it is possible to model interrelations
between interrelations. On the other hand this guarantees the highest possible
integration of interrelations within the distributed system. To be more precise,
interrelations which are objects can be of arbitrary (interrelation) type and can
hold meta-data.

The interrelation mechanism of Dinopolis satisfies all these requirements . It is therefore
the mechanism of choice to model arbitrary relationships between arbitrary objects and
components.

9.2 Outlook

In these days a prototype of the Dinopolis middleware framework is implemented. This
prototype should show that all considerations about interrelations are correct. On basis
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of this prototype a further prototype of the ESRM (Electronic Study Record Man-
ager) application is implemented and all the benefits of the overall Dinopolis system
architecture are shown.

Since the system architecture of Dinopolis is as flexible and modular as possible it
should be no problem at all, to implement a stand-alone version of the interrelation
mechanism presented in this thesis. Giving the proof that this assumption is correct
may also be a interesting exercise for the future.

65



References

[Han, 2002] (2002). Handle System. Corporation for National Research Initiative. avail-
able online http://hdl.handle.net/4263537/4094.

[DOI, 2004] (2004). The DOI handbook. International DOI Foundation (IDF). available
online http://dx.doi.org/10.1000/186.

[Andrews et al., 1994] Andrews, K., Kappe, F., Maurer, H., and Schmaranz, K.
(1994). On Second Generation Hypermedia Systems. Journal of Universal Computer
Science, 0(0):127–135. http://www.jucs.org/jucs_0_0/on_second_generation_

hypermedia.

[Berners-Lee et al., 1994] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F.,
and Secret, A. (1994). The World-Wide Web. 37(8):76–82.

[Berners-Lee and Connolly, 1995] Berners-Lee, T. and Connolly, D. (1995). RFC 1866:
Hypertext Markup Language — 2.0. Status: PROPOSED STANDARD.

[Berners-Lee et al., 1999] Berners-Lee, T., Fielding, R., Frystyk, H., Gettys, J., Leach,
P., Masinter, L., and Mogul, J. (1999). RFC 2616: Hypertext Transfer Protocol
—HTTP/1.1. Status: PROPOSED STANDARD.

[Berners-Lee et al., 1998] Berners-Lee, T., Fielding, R., and Masinter, L. (1998). RFC
2396: Uniform Resource Identifiers (URI): Generic syntax. Status: DRAFT STAN-
DARD.

[Bieber et al., 1997] Bieber, M., Vitali, F., Ashman, H., Balasubramanian, V., and
Oinas-Kukkonen, H. (1997). Fourth generation hypermedia: some missing links for
the world wide web. Int. J. Hum.-Comput. Stud., 47(1):31–65.
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Glossary

CamelCase: “Bicapitalization or camel case, frequently applied to the term itself and
written CamelCase, is the capitalization of more than one word within a compound
word or multi-word symbolic name. Words written this way call to mind a camel
in profile with a head and one or more humps. This is also known as BumpyCase,
StudlyCaps, and WikiWord.”
from http://en.wikipedia.org/wiki/CamelCase.

CeBIT: Centrum der Büro- und Informationstechnik is the world’s most important
computer world’s fair.

CERN : European Centre for Nuclear Research is the European Organization for
Particle Physics Research. It is situated near Geneva between France and Switzer-
land and it is the world’s biggest particle physics laboratory. The acronym original
stood for Conseil Européen pour la Recherche Nucléaire and was changed to Centre
Européen pour la Recherche Nucléaire.

XML: eXtensible Markup Language is a subset of SGML. It defines a particular text
markup language for interchange of structured data.
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List of Acronyms

BPH . . . . . . . . . . Birthplace Handle

CH . . . . . . . . . . . . Current Handle
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DINO . . . . . . . . . Distributed Interactive Network Objects

DLR . . . . . . . . . . German Aerospace Center

DNS . . . . . . . . . . Domain Name System
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OLS . . . . . . . . . . Object Lookup Server

OLSs . . . . . . . . . Object Lookup Servers

PURL . . . . . . . . Persistent URL
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UID . . . . . . . . . . . Unique Identifier

URI . . . . . . . . . . . Uniform Resource Identifier

URL . . . . . . . . . . Uniform Resource Locator

URN . . . . . . . . . . Uniform Resource Name

W3C . . . . . . . . . . World Wide Web Consortium

WWW . . . . . . . . World Wide Web

Xlink . . . . . . . . . XML Linking Language
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